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- Optimization
- Global
- Non-linear / Non-convex
- Constrained

- Synthesis
- Program
- Controller (e.g. Lyapunov function, Barrier function)
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ABSTRACT

Lyapunov functions are used to prove stability and to obtain
performance bounds on system behaviors for nonlinear and
hybrid dynamical systems, but discovering Lyapunov func-
tions is a difficult task in general. We present a technique
for discovering Lyapunov functions and barrier certificates
for nonlinear and hybrid dynamical systems using a search-
based approach. Our approach uses concrete executions,
such as those obtained through simulation, to formulate a
series of linear programming (LP) optimization problems;
the solution to each LP creates a candidate Lyapunov func-
tion. Intermediate candidates are iteratively improved using
a global optimizer guided by the Lie derivative of the candi-
date Lyapunov function. The analysis is refined using coun-
terexamples from a Satisfiability Modulo Theories (SMT)
solver. When no counterexamples are found, the soundness
of the analysis is verified using an arithmetic solver. The
technique can be applied to a broad class of nonlinear dy-
namical systems, including hybrid systems and systems with
polynomial and even transcendental dynamics. We present
several examples illustrating the efficacy of the technique,
including two automotive powertrain control examples.
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ber of simulations to gain confidence in system correctness.
Formal techniques provide better guarantees but are often
intractable for large, complex system designs. On the other
hand, simulation-based methods work well for systems of
arbitrary complexity but cannot be used for verification.
In this paper, we describe our effort to bridge this gap by
formally addressing prominent analysis problems for hybrid
systems while leveraging data obtained from simulations. In
particular, we address the problems of proving stability of
a system, characterizing performance bounds by computing
forward invariant sets, and proving system safety by auto-
matically synthesizing barrier certificates.

It is well-known that each of these problems can be ef-
fectively addressed if the designer is able to supply a func-
tion v that satisfies the following Lyapunov conditions in
a given region of interest: (1) v is positive definite, and
(2) the Lie derivative of v along the system dynamics is
negative (semi-)definite. While the search for a Lyapunov
function is widely recognized as a hard problem, sum-of-
squares (SoS) optimization-based techniques have been used
successfully to obtain Lyapunov functions for systems with
polynomial [17, 21] , nonpolynomial [16], and hybrid [18] dy-

namire While thece techninainieed have matiire tnnl ciimnnrt

HSCC'14
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We present a simulation-based approach for generating barrier certificate functions for safety ver-
ification of cyber-physical systems (CPS) that contain neural network-based controllers. A linear
programming solver is utilized to find a candidate generator function from a set of simulation traces
obtained by randomly selecting 1nitial states for the CPS model. A level set of the generator function
is then selected to act as a barrier certificate for the system, meaning it demonstrates that no unsafe
system states are reachable from a ¢ given set of il initial Stes The barrier certificate properties are
verified with an SMT solver. This approach 1s demonstrated on a case study in which a Dubins car
model of an autonomous vehicle 1s controlled by a neural network to follow a given path.




Reasoning about Safety of Learning-Enabled Components in
Autonomous Cyber-physical Systems

Cumbhur Erk

{cumhur . 1

We present
1fication of
programmi
obtained by
1s then sele
system stat
verified wii
model of ai

Seed
Traces P,

/

Candidate
Generator

Function W

/

l

SMT Solver:

/ CEX / Check (5)

UNSAT?

YES

Compute |,

Y

Level set

Y

Level
set

SMT Solver:
Check
(6) & (7)

}J()(3)

UNSAT?

YES

Hallt:
System 1s Safe

Deshmukh?

.Ousc.edu

safety ver-
. A linear
it1on traces
or function
. no unsafe
jperties are
Dubins car

DAC'18

10



Reasoning about Safety of Learning-Enabled Components in
Autonomous Cyber-physical Systems

Cumbhur Erk

{cumhur . 1

We present
1fication of
programmi
obtained by
1s then sele
system stat
verified wii
model of ai

Seed
Traces P,

/

Solve
LPp)

l

Candidate
Generator

Function W

/

l

SMT Solver:

/ CEX / Check (5)

UNSAT?

YES

Compute

Y

Level set

Y

Level
set

SMT Solver:
Check
(6) & (7)

}J()(3)

UNSAT?

YES

Hallt:
System 1s Safe

Deshmukh?

.Ousc.edu

safety ver-
. A linear
it1on traces
or function
. no unsafe
jperties are
Dubins car

Can we handle the whole synthesis problem in a solver?

DAC'18

11



Decision Problem over the Real

Given an arbitrary first-order logic formula with computable real functions

l

@ = hnly vl Q,,[ll"’””]xn. /\ f,-,j(7) >0V \/fi,k(y) > 0
j k

decide whether ¢ is satisfiable or not.
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Decision Problem over the Real

Given an arbitrary first-order logic formula with computable real functions

p = ol iy, gty = ATN/£(F)>0v \/£f(3) >0
j k

l

decide whether ¢ is satisfiable or not.

Complexity results for the existential problems:

- Doubly exponential lower bound for fragment with only polynomials [Davenport 1988]

- Undecidable with “sine” [Tarski 1950s]
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Delta-Decision Problem

Idea: Allow bounded numerical errors in logical decision

Instead of solving ¢,

p = Fhuly vkl gty - ANN\/£(F) > 0v \/fuF) > 0
' k

l

decide the delta-weakening of ¢ defined as follows

§0_5 — 3[l1au1]xl V[lzabtz]xz Q[l u] /\ \/fz,](y) > _5 V \/fz,k(y) Z _5
J k

l
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Delta-Decision Problem

e Key Results from [LICS12]
 The delta-decision problem is decidable.

 The complexity of the problem is not higher than Boolean logic when
considering P-computable functions.

e Existential Problem (3) — 2" (=NP)

e Exists-forall Problem (3v) — 2.,

15



Algorithm: DPLL<ICP>

 SAT Solver: Find a conjunction of theory literals.

 Theory Solver: Checks if a given conjunction of theory literals is satisfiable
under the theory.

* |CP: Interval Constraint Propagation

Fixedpoint

Computation

Pruning Branch

Reduce a search space Partition a search space
without removing solutions iInto two sub-spaces



How to Design Delta-Decision Procedures
for Exists-forall Problems?

= How to Design a pruning operator for forall constraints

Example: 3171y V[_4’4]y.x2 + y2 <5°

/Z\ /i\

X E‘} /4 lx X
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Simple Case:
Unconstrained Global Optimization

min f(x)
'

dx.Vy.f(x) < f(y)m




Simple Case:
Unconstrained Global Optimization

dx.Vy. f(x) < f(y)

Finding the exact global optimum is undecidable
when we allow functions such as sin, cos.

f(x)

19



Simple Case:
Unconstrained Global Optimization

Instead, we want to find an interval | such that for all x € | :

Vy.fix) L fly)+0

Note that this problem is decidable (Z.)

f(x)

P——

20



ldea: Counterexample Refinement

Find a counterexample b such that foranain | ?

fla) > f(b)

and use it to reduce IX1 to IX2.

Ax € I' . Vy.f(x) < f(y)

i, E s .. i -
Counterexample i | | |
for y! | i | i

<:| = A ajenuelsu|

3x € 1] . flx) < f(b) s s a -
e ————————— P P A S SIS i ||<— ________ _>|| i
Reuse the pruning operators : |2 '
for 3-Problems. ST o g

21



Finding a Counterexample

Jx) > f(y)

How do we find such y?
Note that the problem is in general undecidable again.

We use delta-decision solver to find a counterexample:

Solve(f(x) > f (y) 0 )




Problem of spurious counterexamples
Solve(f(x) > f(y),d') finds (x, y) such that:

J(x) > f(y)




Problem of spurious counterexamples
Solve(f(x) > f(y),d') finds (x, y) such that:

fix) 8> )

Spurious counterexamples give NO pruning power.



Solution: Double-sided Error Control

Key ldea

Strengthen the counterexample query to avoid spurious counterexamples.



Solution: Double-sided Error Control

Instead of solving the following to counterexample:

Solve(f(x) > f(y), o)

Solve the following e-strengthened the CE query:

Solve(f(x) > f(y)+¢€,0)

Q: Given 6, how to pick &' and €?



Solution: Double-sided Error Control

Q: Given 8, how to pick &' and €?

Solve(f(x) > f(y) + €,0")

UNSAT CASE: It shows that t(x)
Vy. J(x) < f(y) +€

Note that we wanted to satisfy:

Vy.f(x) < f(y)+6

So we have:

€ <0 i



Solution: Double-sided Error Control

Q: Given 8, how to pick &' and €?

Solve(f(x) > f(y) + €,0")

0-SAT CASE: We have (X, y) such that:

J(x) > f(y) + (e —0)
T N ) o D Y A
Since y should be a true counterexample: 5'1‘(97&:"6’5 """""""""""""
e—0 >0 E E
That is,
0 < € 5 n
e

28



Solution: Double-sided Error Control

Given 0, how to pick &' and €?

0'<e<O



Pruning Algorithm

Algorithm 2 V-Clause Pruning

function PRUNE(B,, B,, Yy \/2?:0 fi(x,y) > 0,46, ¢, 0)
repeat
Bgrev «— B,

1:

2

3

4

5

6

7

8: return B, > No counterexample found, stop pruning.
9: end if
10: for i € {0,...,k} do

1 B; « B, Prune(Bx, fi(z,b) > 0)

| 2
|3
14
1D
6:

end for
Eﬁ?*‘Lﬁ;ofﬁ
until B, # B>
return B,
end function

30



Local Optimization

e :
fe L X1 ) -
X0
(a) Without local optimization. (b) With local optimization.

Fig. 1: llustrations of the pruning algorithm for CNF"-formula with and without
using local optimization.
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Case Study: Nonlinear Global Optimization

A l»\

(a) Ackley Function. (b) EggHolder Function.

(c) Holder Table2 Function.

Rl
R

(e) Ripple 1 Function. (f) Testtube Holder Function.




Case Study: Nonlinear Global Optimization

_4 Name Solution Time (sec)
o=le Global No L-Opt. | L-Opt. No L-Opt. | L-Opt. | Speed up
Ackley 2D 0.00000 0.00000 0.00000| 0.0579 0.0047 | 12.32
Ackley 4D 0.00000 0.00005 0.00000 | 8.2256 0.1930 | 42.62
Aluffi Pentini —0.35230| —0.35231| —0.35239| 0.0321 0.1868 0.17
Beale 0.00000 0.00003 0.00000| 0.0317 0.0615 0.52
Bohachevsky1l 0.00000 0.00006 0.00000 | 0.0094 0.0020| 4.70
Booth 0.00000 0.00006 0.00000 | 0.5035 0.0020 | 251.75
8 Brent 0.00000 0.00006 0.00000 | 0.0095 0.0017| 5.59
% Bukin6 0.00000 0.00003 0.00003 | 0.0093 0.0083 1.12
"(?) Cross in tray —2.06261 | —2.06254| —2.06260| 0.5669 0.1623 3.49
§ Easom —1.00000| —1.00000| —1.00000| 0.0061 0.0030 2.03
:C) EggHolder —959.64070 |—959.64030 |—959.64031 | 0.0446 0.0211 2.11
Holder Table 2 —19.20850 | —19.20846 | —19.20845 | 52.9152 41.7004 1.27
Levi N13 0.00000 0.00000 0.00000 | 0.1383 0.0034 | 40.68
Ripple 1 —2.20000 | —2.20000| —2.20000 | 0.0059 0.0065 0.91
Schaffer F6 0.00000 0.00004 0.00000 | 0.0531 0.0056 9.48
Testtube holder —10.87230 | —10.87227| —10.87230| 0.0636 0.0035| 18.17
Trefethen —3.30687 | —3.30681| —3.30685, 3.0689 1.4916 2.06
W Wavy 0.00000 0.00000 0.00000 | 0.1234 0.0138 8.94
Zettl —0.00379| —-0.00375| —0.00379, 0.0070 0.0069 1.01
O Rosenbrock Cubic 0.00000 0.00005 0.00002 | 0.0045 0.0036 1.25
GE) Rosenbrock Disk 0.00000 0.00002 0.00000 | 0.0036 0.0028 1.29
% Mishra Bird —106.76454 |—106.76449 |—106.76451 | 1.8496 0.9122 2.03
g Townsend —2.02399 | —2.02385| —2.02390| 2.6216 0.5817| 4.51
O Simionescu —0.07262| —-0.07199| —-0.07200| 0.0064 0.0048 1.33
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Case Study: Synthesizing Lyapunov Function

Problem: Find a Lyapunov function for a dynamical system, v : X = R*, which satisfies the following condition:

Ve € X \0v(x)0) =
Vo € X Vo) - fi(a(t)) <

where the system is described by a system of ODEs:

x(t) = fi(z(t)), Va(t) € Xi.

34



Case Study: Synthesizing Lyapunov Function

Damped Mathieu System Mathieu dynamics are time-varying and defined
by the following ODEs:

k2 _ X9
To —Tg — (2 + Sin(t))ml_ '

Using a quadratic template for a Lyapunov function v(x) = ! Px = ¢ z1 29

cow? + c3x4, we can encode this synthesis problem into the following 3V-formula:

dcicocs Vrpaot [(50x1x000 + 50x%cl + 5O$303 > 0)A
(100611’15[32 + 50x9co + (—CEQ — 331(2 - Sin(t)))(50$162 —+ :_0033263) 2 O)
V(001 <22 +23) A0I <AL A (2] + 25 <1))]

Our prototype solver takes 26.533 seconds to synthesize the following function
as a solution to the problem for the bound ||x| € [0.1,1.0], ¢ € [0.1,1.0], and
c; € [45,98] using 6 = 0.05:

V = 54.6950x1 22 + 90.2849x7 + 50.5376x3.
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Conclusion

* To handle exist-forall problems in the delta-decision framework, we have designed pruning operators for v-
constraints.

* Finding (good) counterexamples is the key:
 Double-sided error control is necessary to avoid spurious counterexamples.
e Using local-optimization technigues can accelerate the solving process.
 Proved the correctness of the algorithm (See theorem 1 in the paper)

* The recursive nature of the algorithm (dReal calls dReal) matches with the problem's time complexity
(22)-

* Demonstrated the effectiveness of the procedures on various global optimization and Lyapunov function
synthesis problems.

* The tool is available at https://github.com/dreal/dreal4 (released under Apache 2.0)
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