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Abstract. We propose δ-complete decision procedures for solving sat-
isfiability of nonlinear SMT problems over real numbers that con-
tain universal quantification and a wide range of nonlinear functions.
The methods combine interval constraint propagation, counterexample-
guided synthesis, and numerical optimization. In particular, we show
how to handle the interleaving of numerical and symbolic computation
to ensure delta-completeness in quantified reasoning. We demonstrate
that the proposed algorithms can handle various challenging global opti-
mization and control synthesis problems that are beyond the reach of
existing solvers.

1 Introduction

Much progress has been made in the framework of delta-decision procedures for
solving nonlinear Satisfiability Modulo Theories (SMT) problems over real num-
bers [1,2]. Delta-decision procedures allow one-sided bounded numerical errors,
which is a practically useful relaxation that significantly reduces the computa-
tional complexity of the problems. With such relaxation, SMT problems with
hundreds of variables and highly nonlinear constraints (such as differential equa-
tions) have been solved in practical applications [3]. Existing work in this direc-
tion has focused on satisfiability of quantifier-free SMT problems. Going one
level up, SMT problems with both free and universally quantified variables,
which correspond to ∃∀-formulas over the reals, are much more expressive.
For instance, such formulas can encode the search for robust control laws in
highly nonlinear dynamical systems, a central problem in robotics. Non-convex,
multi-objective, and disjunctive optimization problems can all be encoded as
∃∀-formulas, through the natural definition of “finding some x such that for all
other x′, x is better than x′ with respect to certain constraints.” Many other
examples from various areas are listed in [4].

Counterexample-Guided Inductive Synthesis (CEGIS) [5] is a framework for
program synthesis that can be applied to solve generic exists-forall problems. The
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(a) Ackley Function. (b) EggHolder Function.

(c) Holder Table2 Function. (d) Levi N13 Function.

(e) Ripple 1 Function. (f) Testtube Holder Function.

Fig. 2: Nonlinear Global Optimization Examples.

can be encoded as the logic formula:

'(x) ^ 8y
⇣
'(y) ! f(x)  f(y)

⌘
.

As plotted in Figure 2, these optimization problems are non-trivial: they
are highly non-convex problems that are designed to test global optimization or
genetic programming algorithms. Many such functions have a large number of
local minima. For example, Ripple 1 Function [27]

f(x1, x2) =
2X
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�e�2(log 2)( x1�0.1
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+ (y + 47) − x sin ( |x − (y + 47)|)Eggholder Function −512 ≤ x, y ≤ 512
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ABSTRACT
Lyapunov functions are used to prove stability and to obtain
performance bounds on system behaviors for nonlinear and
hybrid dynamical systems, but discovering Lyapunov func-
tions is a di�cult task in general. We present a technique
for discovering Lyapunov functions and barrier certificates
for nonlinear and hybrid dynamical systems using a search-
based approach. Our approach uses concrete executions,
such as those obtained through simulation, to formulate a
series of linear programming (LP) optimization problems;
the solution to each LP creates a candidate Lyapunov func-
tion. Intermediate candidates are iteratively improved using
a global optimizer guided by the Lie derivative of the candi-
date Lyapunov function. The analysis is refined using coun-
terexamples from a Satisfiability Modulo Theories (SMT)
solver. When no counterexamples are found, the soundness
of the analysis is verified using an arithmetic solver. The
technique can be applied to a broad class of nonlinear dy-
namical systems, including hybrid systems and systems with
polynomial and even transcendental dynamics. We present
several examples illustrating the e�cacy of the technique,
including two automotive powertrain control examples.

Keywords
Lyapunov functions, Stability, Invariant Sets, Barrier cer-
tificates, Simulation

1. INTRODUCTION
Analysis techniques for hybrid systems range from formal

techniques that can provide mathematical proofs of correct-
ness to testing-based techniques that rely on a large num-
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ber of simulations to gain confidence in system correctness.
Formal techniques provide better guarantees but are often
intractable for large, complex system designs. On the other
hand, simulation-based methods work well for systems of
arbitrary complexity but cannot be used for verification.
In this paper, we describe our e↵ort to bridge this gap by
formally addressing prominent analysis problems for hybrid
systems while leveraging data obtained from simulations. In
particular, we address the problems of proving stability of
a system, characterizing performance bounds by computing
forward invariant sets, and proving system safety by auto-
matically synthesizing barrier certificates.
It is well-known that each of these problems can be ef-

fectively addressed if the designer is able to supply a func-
tion v that satisfies the following Lyapunov conditions in
a given region of interest: (1) v is positive definite, and
(2) the Lie derivative of v along the system dynamics is
negative (semi-)definite. While the search for a Lyapunov
function is widely recognized as a hard problem, sum-of-
squares (SoS) optimization-based techniques have been used
successfully to obtain Lyapunov functions for systems with
polynomial [17, 21] , nonpolynomial [16], and hybrid [18] dy-
namics. While these techniques have mature tool support
[20, 14], they often involve solving problems that are numer-
ically sensitive. For instance, a function computed by such a
technique may not strictly satisfy the Lyapunov conditions
for all points in the region of interest.
Our key contribution is a novel technique to exploit the

results obtained by simulating a system to obtain a prov-
ably correct and numerically robust certificate of stability or
safety for the system. The decision to use simulation data
and test results is natural in the context of complex dynam-
ical systems, such as those in industrial control systems.
In such systems, simulations are often used to validate sys-
tem designs and increase confidence in system performance.
Powerful tools for performing simulation are readily avail-
able and are commonly used in, for example, the automo-
tive industry to perform model-based design (e.g., Simulink
from the MathWorks [1]).
We now give a brief overview of our technique. We assume

that the desired Lyapunov function has a certain parameter-
ized template form: an SoS polynomial of fixed degree. We
derive a set of linear constraints on the parameters in the
Lyapunov function from concrete execution traces. Given
a set of such constraints, the search for a Lyapunov func-
tion then reduces to solving a linear program (LP) to obtain
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Figure 2: Incorporating solver technologies to verify

soundness of the Lyapunov anlyses.

be computed by maximizing the levelset size such that the
levelset remains within D. This can be formulated as a con-
vex optimization problem that can be solved e�ciently using
an SDP solver. The result is a candidate barrier certificate,
which can be validated using the technique described in Sec-
tion 4.1.

Run Solver. This operation applies one of the technolo-
gies described in Section 4.2 to the generated query. If the
result is that the query is unsatisfiable, then the Lyapunov
analysis (based on the candidate Lyapunov function and the
construction produced by the Formulate Solver Query oper-
ation) is sound, and the procedure may halt. If the result is
that the query is satisfiable, then a counterexample may be
used to refine the Lyapunov candidate on which the query
was based. Note that all of the technologies described in Sec-
tion 4.2 produce some form of counterexamples except for
the SoS-based techniques; for this case, some other method
of refinement must be selected (e.g., selecting a di↵erent Lya-
punov function template or adding several new simulation
traces randomly).

5. EXAMPLE CASE STUDIES
We present several examples involving nonlinear and hy-

brid dynamical systems. In some cases, the analysis task
is to produce a Lyapunov function within some designated
domain; in other examples, the analysis task is to produce
a forward invariant set. Our examples include systems with
ODEs that are polynomial, transcendental, and switched.
For systems with ODEs, traces are produced by the ode45
numerical integration algorithm provided in MATLABR�.

A summary of the results for the examples is given in Ta-
ble 2. For each example, the table lists the following: the
example name, the number of continuous state variables,
the computation time taken for the procedure in Figure 1
to produce a candidate Lyapunov function, the number of
simulation points explored by the falsification tool, the com-

putation time required by the arithmetic solver, and the
arithmetic solver used to verify the result.

5.1 Example 1: Normalized Pendulum
Consider a standard pendulum system with normalized

parameters:


ẋ1

ẋ2

�
=


x2

� sin(x1)� x2

�
.

Here, x1 represents angular position and x2 angular velocity.
The system has only one mode of operation. The continuous
dynamics contain a transcendental function, which we note
is di�cult for most other techniques to handle. This system
is guaranteed to be stable, as it is a representation of a
passive physical system with damping (i.e., the system will
tend to a zero-energy state over time).
The task for this example is to identify a Lyapunov func-

tion for the system that is valid within the domain D =
{x|xT

x  1} and also to identify a forward invariant set. We
select z = x, that is, the Lyapunov candidates are quadratic.
The procedure from Figure 1 produces the candidate Lya-

punov function v(x) = x
T
Px, where, after rounding:

P =


100.0 24.0
24.0 92.0

�
.

The procedure takes 74.22 seconds. A total of 300 simulation
traces were explored by the falsification tool, each with 10
time steps of 0.1 seconds each.
A query of the form given by (13) and (14) was posed to

the Mathematica arithmetic solver and was able to prove
that the query is unsatisfiable in 7.72 seconds, thus prov-
ing that the above candidate Lyapunov function is a proper
Lyapunov function.
A convex optimization provides the size of the largest lev-

elset of the Lyapunov function that is contained within the
domain. The resulting levelset size was l = 71.51, where
the invariant set is given by {x|v(x)  l}. The SDP solver
returns this result in 1.36 seconds. Figure 3 illustrates the
results. Simulation traces explored by the falsification tool
appear as dotted lines, with the associated initial conditions
marked with an asterisk. The dashed line indicates the do-
main for the example (the unit ball). The dash-dotted line
represents the invariant set.

5.2 Example 2: Constrained Pendulum
Consider the following constrained pendulum example [22]:

ẋ1 =

⇢
1
2x2 x1 � � ⇡

18
x2 otherwise

ẋ2 = �g sin(x1)� x2,

where x1 is the angular position, x2 is the angular velocity,
and g = 9.8 is the acceleration due to gravity. The behavior
is similar to the previous example, except a pin constrains
the swing of the pendulum. Thus, the system has two modes
of operation. If x1 � ⇡

18 , the pendulum is unconstrained by
the pin, and the e↵ective length of the pendulum is 2.0 m.
When x1 < ⇡

18 , the pin constrains the pendulum swing, and
e↵ective length of the pendulum is 1.0 m.
As in the previous example, the system is guaranteed to

be stable as it is a physical system with damping. For this
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We present a simulation-based approach for generating barrier certificate functions for safety ver-
ification of cyber-physical systems (CPS) that contain neural network-based controllers. A linear
programming solver is utilized to find a candidate generator function from a set of simulation traces
obtained by randomly selecting initial states for the CPS model. A level set of the generator function
is then selected to act as a barrier certificate for the system, meaning it demonstrates that no unsafe
system states are reachable from a given set of initial states. The barrier certificate properties are
verified with an SMT solver. This approach is demonstrated on a case study in which a Dubins car
model of an autonomous vehicle is controlled by a neural network to follow a given path.

1 Introduction

Self-driving cars, unmanned aerial vehicles, and certain kinds of robots are examples of autonomous
cyber-physical systems (ACPS), that is, physical systems controlled by software that are envisioned to
have no human operator. Remarkable success has been achieved by AI and machine learning algorithms
in solving complex tasks heretofore thought to require human intellect. This has led to a concerted effort
to utilize AI in embedded software for ACPS applications. We observe that the rapid advances in AI
have focused on expanding the scope and efficacy of the underlying techniques, but from a rigorous
mathematical perspective, there has been little achieved towards guaranteeing formal correctness of AI
algorithms and their impact on overall safety of ACPS applications in which they may be used.

There has been a sudden upsurge in research focusing on formal verification and testing for AI al-
gorithms in the last two years [4, 5, 12, 9]. These papers focus on analyzing the AI artifacts (such as
artificial neural networks, specifically focusing on deep neural networks). Such analysis provides a bet-
ter understanding of the robustness and safety of the artifact itself. When accompanied by environment
models, above analyses could be used to reason about the overall system safety as well; however, such
decompositional models, where the environment assumptions are provided in a form that is easily com-
posable with the verification or testing algorithms for AI artifacts, are difficult to obtain. On the other
hand, approaches such as [3] take a markedly different approach; they perform in situ reasoning about
the AI artifact in a closed-loop model of an ACPS. In our opinion, such approaches provide greater value
by directly reasoning about the closed-loop system safety. In this paper, we propose a method for verifi-
cation of closed-loop system models of ACPS, where the controller uses a neural network (NN). Thus,
our work goes one step further from existing approaches as it brings mathematical rigor through formal
verification to closed-loop ACPS models.

Our key idea is to automatically learn safety invariants for the closed-loop model. Such safety invari-
ants can take the form of barrier certificates. We automatically synthesize candidate barrier certificates
using simulation-guided techniques, such as those proposed in [11, 1, 2]. We then verify the overall
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4 Reasoning about Safety of Learning-Enabled Components in Autonomous Cyber-physical Systems

3 Solution Overview

We present a method to perform verification of safety properties for CPSs that contain NN components.
Our approach closely follows the simulation-based barrier certificate strategy described in [11]. The key
idea in this approach is to define a barrier certificate as a level set of a generator function W (x), i.e.
the barrier certificate B(x) is the function W (x)� ` for some ` 2 R>0. The generator function W (x) is
assumed to be a positive function that decreases along the system trajectories. We assume that W (x) is
specified using suitable templates, such as Sum-of-Squares polynomials, where the coefficients of the
monomial terms are to be determined.

The method starts by performing a collection of simulations to generate a set of linear constraints that
specify the positivity of the candidate generator function, and that it decreases along system trajectories.
We then check condition (3) from Definition 2.1; note that we can do this as —B = —W , since ` is a
constant. We check this condition using an SMT solver. The SMT solver either produces a counterexam-
ple (CEX) that results in an updated candidate generator function, or it returns UNSAT, which certifies
that the candidate is sound. Finally, we use the generator function to find the appropriate value of ` that
separates the initial condition set from the unsafe set, and thus acts as a barrier certificate for the system.
There are certain nuances in each of these steps that we now describe below.

The flowchart in Figure 1 illustrates the process. We first create a collection of linear constraints, as
described above, using results from simulations Fs. A linear program (LP) is solved to obtain a solution
that satisfies the constraints. The LP solution corresponds to a candidate generator function W (x).

Seed
Traces Fs

]Traces
F f

Solve
LP(1)

Candidate
Generator

Function W

SMT Solver:
Check (5)

UNSAT?

CEX

Simulate

Compute
Level set

Level
set

SMT Solver:
Check

(6) & (7)

UNSAT?

Halt:
System is Safe

NO(2) YES

YES

NO(3)

(1,2,3) If the LP is infeasible or if the maximum number of
iterations to find a candidate generator function or a levelset is
reached, the algorithm terminates with no conclusions.

Figure 1: Procedure to verify safety property for NN-based system.

Next, an SMT solver is used to check the following property over the domain of interest:

9x 2 D : (x 62 X0)^ ((—W )T · f (x)) ��g. (5)
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to utilize AI in embedded software for ACPS applications. We observe that the rapid advances in AI
have focused on expanding the scope and efficacy of the underlying techniques, but from a rigorous
mathematical perspective, there has been little achieved towards guaranteeing formal correctness of AI
algorithms and their impact on overall safety of ACPS applications in which they may be used.

There has been a sudden upsurge in research focusing on formal verification and testing for AI al-
gorithms in the last two years [4, 5, 12, 9]. These papers focus on analyzing the AI artifacts (such as
artificial neural networks, specifically focusing on deep neural networks). Such analysis provides a bet-
ter understanding of the robustness and safety of the artifact itself. When accompanied by environment
models, above analyses could be used to reason about the overall system safety as well; however, such
decompositional models, where the environment assumptions are provided in a form that is easily com-
posable with the verification or testing algorithms for AI artifacts, are difficult to obtain. On the other
hand, approaches such as [3] take a markedly different approach; they perform in situ reasoning about
the AI artifact in a closed-loop model of an ACPS. In our opinion, such approaches provide greater value
by directly reasoning about the closed-loop system safety. In this paper, we propose a method for verifi-
cation of closed-loop system models of ACPS, where the controller uses a neural network (NN). Thus,
our work goes one step further from existing approaches as it brings mathematical rigor through formal
verification to closed-loop ACPS models.

Our key idea is to automatically learn safety invariants for the closed-loop model. Such safety invari-
ants can take the form of barrier certificates. We automatically synthesize candidate barrier certificates
using simulation-guided techniques, such as those proposed in [11, 1, 2]. We then verify the overall
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4 Reasoning about Safety of Learning-Enabled Components in Autonomous Cyber-physical Systems

3 Solution Overview

We present a method to perform verification of safety properties for CPSs that contain NN components.
Our approach closely follows the simulation-based barrier certificate strategy described in [11]. The key
idea in this approach is to define a barrier certificate as a level set of a generator function W (x), i.e.
the barrier certificate B(x) is the function W (x)� ` for some ` 2 R>0. The generator function W (x) is
assumed to be a positive function that decreases along the system trajectories. We assume that W (x) is
specified using suitable templates, such as Sum-of-Squares polynomials, where the coefficients of the
monomial terms are to be determined.

The method starts by performing a collection of simulations to generate a set of linear constraints that
specify the positivity of the candidate generator function, and that it decreases along system trajectories.
We then check condition (3) from Definition 2.1; note that we can do this as —B = —W , since ` is a
constant. We check this condition using an SMT solver. The SMT solver either produces a counterexam-
ple (CEX) that results in an updated candidate generator function, or it returns UNSAT, which certifies
that the candidate is sound. Finally, we use the generator function to find the appropriate value of ` that
separates the initial condition set from the unsafe set, and thus acts as a barrier certificate for the system.
There are certain nuances in each of these steps that we now describe below.

The flowchart in Figure 1 illustrates the process. We first create a collection of linear constraints, as
described above, using results from simulations Fs. A linear program (LP) is solved to obtain a solution
that satisfies the constraints. The LP solution corresponds to a candidate generator function W (x).

Seed
Traces Fs

]Traces
F f

Solve
LP(1)

Candidate
Generator

Function W

SMT Solver:
Check (5)

UNSAT?

CEX

Simulate

Compute
Level set

Level
set

SMT Solver:
Check

(6) & (7)

UNSAT?

Halt:
System is Safe

NO(2) YES

YES

NO(3)

(1,2,3) If the LP is infeasible or if the maximum number of
iterations to find a candidate generator function or a levelset is
reached, the algorithm terminates with no conclusions.

Figure 1: Procedure to verify safety property for NN-based system.

Next, an SMT solver is used to check the following property over the domain of interest:

9x 2 D : (x 62 X0)^ ((—W )T · f (x)) ��g. (5)

Can we handle the whole synthesis problem in a solver?



Decision Problem over the Real
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Given an arbitrary first-order logic formula with computable real functions

decide whether ϕ is satisfiable or not.

φ = ∃[l1,u1]x1 ∀[l2,u2]x2 . . . Q[ln,un]
n xn . ⋀

i
⋁

j

fi,j( ⃗x ) > 0 ∨ ⋁
k

fi,k( ⃗x ) ≥ 0



Decision Problem over the Real

!13

Given an arbitrary first-order logic formula with computable real functions

decide whether ϕ is satisfiable or not.

Complexity results for the existential problems:


- Doubly exponential lower bound for fragment with only polynomials [Davenport 1988]


- Undecidable with “sine” [Tarski 1950s]

φ = ∃[l1,u1]x1 ∀[l2,u2]x2 . . . Q[ln,un]
n xn . ⋀

i
⋁

j

fi,j( ⃗x ) > 0 ∨ ⋁
k

fi,k( ⃗x ) ≥ 0



Delta-Decision Problem
Idea: Allow bounded numerical errors in logical decision


Instead of solving ϕ, 
 
 
 
decide the delta-weakening of ϕ defined as follows

!14

φ−δ = ∃[l1,u1]x1 ∀[l2,u2]x2 . . . Q[ln,un]
n xn . ⋀

i
⋁

j

fi,j( ⃗x ) > −δ ∨ ⋁
k

fi,k( ⃗x ) ≥ −δ

φ = ∃[l1,u1]x1 ∀[l2,u2]x2 . . . Q[ln,un]
n xn . ⋀

i
⋁

j

fi,j( ⃗x ) > 0 ∨ ⋁
k

fi,k( ⃗x ) ≥ 0

φ+δ ⟹ φ ⟹ φ−δ
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• Key Results from [LICS12]


• The delta-decision problem is decidable.


• The complexity of the problem is not higher than Boolean logic when 
considering P-computable functions.


• Existential Problem (∃)      → Σ₁ᴾ (=NP)


• Exists-forall Problem (∃∀)  → Σ₂ᴾ


• ...

Delta-Decision Problem



Algorithm: DPLL<ICP>
• SAT Solver: Find a conjunction of theory literals.


• Theory Solver: Checks if a given conjunction of theory literals is satisfiable 
                        under the theory.


• ICP: Interval Constraint Propagation 

!16

Pruning Branch

Fixedpoint

Computation

Reduce a search space  
without removing solutions

Partition a search space  
into two sub-spaces



How to Design Delta-Decision Procedures  
for Exists-forall Problems?
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⇒ How to Design a pruning operator for forall constraints

Example:

5

5 x

y

5

5 x

y

5

5 x

y

9[�5,5]x.8[�4,4]y. x2 + y2 <= 52

(A) Initial Search Space: x = [-5, 5] (B) Find a counterexample (C) Prune x using the counterexample

-4.5

3 3

-4 4

5

5 x

y

5

5 x

y

5

5 x

y

9[�5,5]x.8[�4,4]y. x2 + y2 <= 52

(A) Initial Search Space: x = [-5, 5] (B) Find a counterexample (C) Prune x using the counterexample

-4.5

3 3

-4 4

∃[−5,5]x . ∀[−4,4]y . x2 + y2 ≤ 52

4 4

Prune



Simple Case:  
Unconstrained Global Optimization
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min f(x)

∃x . ∀y . f(x) ≤ f(y)

x

f(x)



Simple Case:  
Unconstrained Global Optimization

!19

∃x . ∀y . f(x) ≤ f(y)
Finding the exact global optimum is undecidable  

when we allow functions such as sin, cos.

x

f(x)



Simple Case:  
Unconstrained Global Optimization

!20

Instead, we want to find an interval Iₓ such that for all x ∈ Iₓ :

f(x)

δ

Iₓ

∀y . f(x) ≤ f(y) + δ
Note that this problem is decidable (Σ₂ᴾ)



Idea: Counterexample Refinement

!21

f(a) > f(b)
Find a counterexample b such that for an a in Iₓ¹

and use it to reduce Iₓ¹ to Iₓ².


Iₓ¹

Iₓ²

∃x ∈ I1
x . ∀y . f(x) ≤ f(y)

∃x ∈ I1
x . f(x) ≤ f(b)

Instantiate y = b

Reuse the pruning operators 
for ∃-Problems.

Counterexample 
for y!



Finding a Counterexample
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f(x) > f(y)
How do we find such y? 


Note that the problem is in general undecidable again.


We use delta-decision solver to find a counterexample:

Solve( f(x) > f(y), δ′�)
How to pick this?



Problem of spurious counterexamples

!23

Solve(f(x) > f(y), δ')   finds (x, y) such that:Solve( f(x) > f(y), δ′�)

f(x) > f(y)

Iₓ¹

yx

f(y)

f(x)



Problem of spurious counterexamples

!24

Iₓ

y x

f(y)
f(x)

f(x) + δ'

Spurious counterexamples give NO pruning power.

Solve(f(x) > f(y), δ')   finds (x, y) such that:Solve( f(x) > f(y), δ′�)

f(x) > f(y)
f(x) + δ′� > f(y)



Solution: Double-sided Error Control

!25

Key Idea 
 

Strengthen the counterexample query to avoid spurious counterexamples.



Solution: Double-sided Error Control

!26

Solve( f(x) > f(y), δ′�)

Solve( f(x) > f(y)+ϵ, δ′�)

Instead of solving the following to counterexample:

Solve the following ε-strengthened the CE query:

Q: Given δ, how to pick δ' and ε?



Solution: Double-sided Error Control

!27

UNSAT CASE: It shows that f(x)

δ

Iₓ

Note that we wanted to satisfy:

So we have:

∀y . f(x) ≤ f(y) + ϵ

∀y . f(x) ≤ f(y) + δ

ϵ < δ

Q: Given δ, how to pick δ' and ε?

ε

Solve( f(x) > f(y) + ϵ, δ′�)



Since y should be a true counterexample:

That is, 

ϵ − δ′� > 0

f(x) > f(y) + (ϵ − δ′�)

δ′� < ϵ
Iₓ

yx

f(y)

f(x)
ε - δ'

Solve( f(x) > f(y) + ϵ, δ′�)

δ-SAT CASE: We have (x, y) such that:

Q: Given δ, how to pick δ' and ε?

Solution: Double-sided Error Control

!28



δ′� < ϵ < δ
Given δ, how to pick δ' and ε? 
 
                                                

Solution: Double-sided Error Control

!29



Pruning Algorithm

!30

special 8-pruning operators in an overall branch-and-prune framework to solve
the full formula in a �-complete way. A special technical difficulty for ensuring
�-completeness is to control numerical errors in the recursive search for coun-
terexamples, which we solve using double-sided error control. We also improve
quality of counterexamples using local-optimization algorithms in the 8-pruning
operations, which we call locally-optimized counterexamples.

In the following sections we describe these steps in detail. For notational
simplicity we will omit vector symbols and assume all variable names can directly
refer to vectors of variables.

3.1 8-Clauses as Pruning Operators

Consider an arbitrary CNF8-formula4

'(x) :=
m̂

i=0

⇣
8y(

ki_

j=0

fij(x, y) � 0)
⌘
.

It is a conjunction of 8-clauses as defined in Definition 2. Consequently, we
only need to define pruning operators for 8-clauses so that they can be used in
a standard branch-and-prune framework. The full algorithm for such pruning
operation is described in Algorithm 2.

Algorithm 2 8-Clause Pruning

1: function Prune(Bx, By, 8y
Wk

i=0 fi(x, y) � 0, �0, ", �)
2: repeat

3: Bprev
x  Bx

4:   
V

i fi(x, y) < 0
5:  +"  Strengthen( , ")
6: b Solve(y, +", �0) . 0 < �0 < " < � should hold.
7: if b = ; then

8: return Bx . No counterexample found, stop pruning.
9: end if

10: for i 2 {0, ..., k} do

11: Bi  Bx \ Prune
⇣
Bx, fi(x, b) � 0

⌘

12: end for

13: Bx  
Fk

i=0 Bi

14: until Bx 6= Bprev
x

15: return Bx

16: end function

4 Note that without loss of generality we only use nonstrict inequality here, since in
the context of �-decisions the distinction between strict and nonstrict inequalities as
not important, as explained in Definition 3.



Local Optimization
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X4

Global Minimum

X3
X2
X1
X0

CE1

CE2

CE3
CE4

(a) Without local optimization.

X2

Global Minimum

X1
X0

CE1

CE2CE1’

Local

Optimization

Local
Optimization

CE2’

 

(b) With local optimization.

Fig. 1: Illustrations of the pruning algorithm for CNF8-formula with and without
using local optimization.

uses those counterexamples to contract the interval assignment on X from X0

to X1, X2, X3, and X4 in sequence. In the search for a counterexample (Line 6
of Algorithm 2), it solves the strengthened query, f(x) > f(y) + �. Note that
the query only requires a counterexample y = b to be �-away from a candidate
x while it is clear that the further a counterexample is away from candidates,
the more effective the pruning algorithm is.

Based on this observation, we present a way to improve the performance of
the pruning algorithm for CNF8-formulas. After we obtain a counterexample b,
we locally-optimize it with the counterexample query  so that it “further vio-
lates” the constraints. Figure 1b illustrates this idea. The algorithm first finds
a counterexample CE1 then refines it to CE0

1 by using a local-optimization al-
gorithm (similarly, CE2 ! CE0

2). Clearly, this refined counterexample gives a
stronger pruning power than the original one. This refinement process can also
help the performance of the algorithm by reducing the number of total iterations
in the fixedpoint loop.

The suggested method is based on the assumption that local-optimization
techniques are cheaper than finding a global counterexample using interval prop-
agation techniques. In our experiments, we observed that this assumption holds
practically. We will report the details in Section 5.

4 �-Completeness

We now prove that the proposed algorithm is �-complete for arbitrary CNF8

formulas in LRF . In the work of [2], �-completeness has been proved for branch-
and-prune for ground SMT problems, under the assumption that the pruning
operators are well-defined. Thus, the key for our proof here is to show that the
8-pruning operators satisfy the conditions of well-definedness.

The notion of a well-defined pruning operator is defined in [2] as follows.



Case Study: Nonlinear Global Optimization
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(a) Ackley Function. (b) EggHolder Function.

(c) Holder Table2 Function. (d) Levi N13 Function.

(e) Ripple 1 Function. (f) Testtube Holder Function.

Fig. 2: Nonlinear Global Optimization Examples.

can be encoded as the logic formula:

'(x) ^ 8y
⇣
'(y) ! f(x)  f(y)

⌘
.

As plotted in Figure 2, these optimization problems are non-trivial: they
are highly non-convex problems that are designed to test global optimization or
genetic programming algorithms. Many such functions have a large number of
local minima. For example, Ripple 1 Function [27]

f(x1, x2) =
2X

i=1

�e�2(log 2)( x1�0.1
0.8 )

2

(sin6(5⇡xi) + 0.1 cos2(500⇡xi))



Case Study: Nonlinear Global Optimization
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230 S. Kong et al.

Table 1. Experimental results for nonlinear global optimization problems: The first
19 problems (Ackley 2D – Zettl) are unconstrained optimization problems and the last
five problems (Rosenbrock Cubic – Simionescu) are constrained optimization problems.
We ran our prototype solver over those instances with and without local-optimization
option (“L-Opt.” and “No L-Opt.” columns) and compared the results. We chose δ =
0.0001 for all instances.

Name Solution Time (sec)

Global No L-Opt. L-Opt. No L-Opt. L-Opt. Speed up

Ackley 2D 0.00000 0.00000 0.00000 0.0579 0.0047 12.32

Ackley 4D 0.00000 0.00005 0.00000 8.2256 0.1930 42.62

Aluffi Pentini −0.35230 −0.35231 −0.35239 0.0321 0.1868 0.17

Beale 0.00000 0.00003 0.00000 0.0317 0.0615 0.52

Bohachevsky1 0.00000 0.00006 0.00000 0.0094 0.0020 4.70

Booth 0.00000 0.00006 0.00000 0.5035 0.0020 251.75

Brent 0.00000 0.00006 0.00000 0.0095 0.0017 5.59

Bukin6 0.00000 0.00003 0.00003 0.0093 0.0083 1.12

Cross in tray −2.06261 −2.06254 −2.06260 0.5669 0.1623 3.49

Easom −1.00000 −1.00000 −1.00000 0.0061 0.0030 2.03

EggHolder −959.64070 −959.64030 −959.64031 0.0446 0.0211 2.11

Holder Table 2 −19.20850 −19.20846 −19.20845 52.9152 41.7004 1.27

Levi N13 0.00000 0.00000 0.00000 0.1383 0.0034 40.68

Ripple 1 −2.20000 −2.20000 −2.20000 0.0059 0.0065 0.91

Schaffer F6 0.00000 0.00004 0.00000 0.0531 0.0056 9.48

Testtube holder −10.87230 −10.87227 −10.87230 0.0636 0.0035 18.17

Trefethen −3.30687 −3.30681 −3.30685 3.0689 1.4916 2.06

W Wavy 0.00000 0.00000 0.00000 0.1234 0.0138 8.94

Zettl −0.00379 −0.00375 −0.00379 0.0070 0.0069 1.01

Rosenbrock Cubic 0.00000 0.00005 0.00002 0.0045 0.0036 1.25

Rosenbrock Disk 0.00000 0.00002 0.00000 0.0036 0.0028 1.29

Mishra Bird −106.76454 −106.76449 −106.76451 1.8496 0.9122 2.03

Townsend −2.02399 −2.02385 −2.02390 2.6216 0.5817 4.51

Simionescu −0.07262 −0.07199 −0.07200 0.0064 0.0048 1.33

5.1 Nonlinear Global Optimization

We encoded a range of highly nonlinear ∃∀-problems from constrained and
unconstrained optimization literature [27 ,28 ]. Note that the standard optimiza-
tion problem

min f(x) s.t. ϕ(x), x ∈ Rn,

can be encoded as the logic formula:

ϕ(x) ∧ ∀y
(
ϕ(y) → f(x) ≤ f(y)

)
.

U
nc
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st
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ed
C
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st
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ed

δ = 1e−4
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defined in xi 2 [0, 1] has 252004 local minima with the global minima f(0.1, 0.1) =
�2.2. As a result, local-optimization algorithms such as gradient-descent would
not work for these problems for itself. By encoding them as 98-problems, we can
perform guaranteed global optimization on these problems.

Table 1 provides a summary of the experiment results. First, it shows that we
can find minimum values which are close to the known global solutions. Second,
it shows that enabling the local-optimization technique speeds up the solving
process significantly for 20 instances out of 23 instances.

5.2 Synthesizing Lyapunov Function for Dynamical System

We show that the proposed algorithm is able to synthesize Lyapunov functions
for nonlinear dynamic systems described by a set of ODEs:

ẋ(t) = fi(x(t)), 8x(t) 2 Xi.

Our approach is different from a recent related-work [29] where they used
dReal only to verify a candidate function which was found by a simulation-
guided algorithm. In contrast, we want to do both of search and verify steps by
solving a single 98-formula. Note that to verify a Lyapunov candidate function v :
X ! R+, we need to show that the function v satisfies the following conditions:

8x 2 X \ 0 v(x)(0) = 0

8x 2 X rv(x(t))T · fi(x(t))  0.

We assume that a Lyapunov function is a polynomial of some fixed degrees
over x, that is, v(x) = zTPz where z is a vector of monomials over x and
P is a symmetric matrix. Then, we can encode this synthesis problem into the
98-formula:

9P [(v(x) = (zTPz))^
(8x 2 X \ 0 v(x)(0) = 0)^
(8x 2 X rv(x(t))T · fi(x(t))  0)]

In the following sections, we show that we can handle two examples in [29].

Normalized Pendulum Given a standard pendulum system with normalized
parameters 

ẋ1

ẋ2

�
=


x2

� sin(x1)� x2

�

and a quadratic template for a Lyapunov function v(x) = xTPx = c1x1x2 +
c2x2

1+ c3x2
2, we can encode this synthesis problem into the following 98-formula:

9c1c2c3 8x1x2 [((50c3x1x2 + 50x2
1c1 + 50x2

2c2 > 0.5)^
(100c1x1x2 + 50x2c3 + (�x2 � sin(x1)(50x1c3 + 100x2c2)) < �0.5))_
¬((0.01  x2

1 + x2
2) ^ (x2

1 + x2
2  1))]

Problem: Find a Lyapunov function for a dynamical system, v : X → ℝ⁺, which satisfies the following condition: 

defined in xi 2 [0, 1] has 252004 local minima with the global minima f(0.1, 0.1) =
�2.2. As a result, local-optimization algorithms such as gradient-descent would
not work for these problems for itself. By encoding them as 98-problems, we can
perform guaranteed global optimization on these problems.

Table 1 provides a summary of the experiment results. First, it shows that we
can find minimum values which are close to the known global solutions. Second,
it shows that enabling the local-optimization technique speeds up the solving
process significantly for 20 instances out of 23 instances.

5.2 Synthesizing Lyapunov Function for Dynamical System

We show that the proposed algorithm is able to synthesize Lyapunov functions
for nonlinear dynamic systems described by a set of ODEs:

ẋ(t) = fi(x(t)), 8x(t) 2 Xi.

Our approach is different from a recent related-work [29] where they used
dReal only to verify a candidate function which was found by a simulation-
guided algorithm. In contrast, we want to do both of search and verify steps by
solving a single 98-formula. Note that to verify a Lyapunov candidate function v :
X ! R+, we need to show that the function v satisfies the following conditions:

8x 2 X \ 0 v(x)(0) = 0

8x 2 X rv(x(t))T · fi(x(t))  0.

We assume that a Lyapunov function is a polynomial of some fixed degrees
over x, that is, v(x) = zTPz where z is a vector of monomials over x and
P is a symmetric matrix. Then, we can encode this synthesis problem into the
98-formula:

9P [(v(x) = (zTPz))^
(8x 2 X \ 0 v(x)(0) = 0)^
(8x 2 X rv(x(t))T · fi(x(t))  0)]

In the following sections, we show that we can handle two examples in [29].

Normalized Pendulum Given a standard pendulum system with normalized
parameters 

ẋ1

ẋ2

�
=


x2

� sin(x1)� x2

�

and a quadratic template for a Lyapunov function v(x) = xTPx = c1x1x2 +
c2x2

1+ c3x2
2, we can encode this synthesis problem into the following 98-formula:

9c1c2c3 8x1x2 [((50c3x1x2 + 50x2
1c1 + 50x2

2c2 > 0.5)^
(100c1x1x2 + 50x2c3 + (�x2 � sin(x1)(50x1c3 + 100x2c2)) < �0.5))_
¬((0.01  x2

1 + x2
2) ^ (x2

1 + x2
2  1))]

where the system is described by a system of ODEs:
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Our prototype solver takes 44.184 seconds to synthesize the following function
as a solution to the problem for the bound kxk 2 [0.1, 1.0] and ci 2 [0.1, 100]
using � = 0.05:

v = 40.6843x1x2 + 35.6870x2
1 + 84.3906x2

2.

Damped Mathieu System Mathieu dynamics are time-varying and defined
by the following ODEs:


ẋ1

ẋ2

�
=


x2

�x2 � (2 + sin(t))x1

�
.

Using a quadratic template for a Lyapunov function v(x) = xTPx = c1x1x2+
c2x2

1+ c3x2
2, we can encode this synthesis problem into the following 98-formula:

9c1c2c3 8x1x2t [(50x1x2c2 + 50x2
1c1 + 50x2

2c3 > 0)^
(100c1x1x2 + 50x2c2 + (�x2 � x1(2 + sin(t)))(50x1c2 + 100x2c3) < 0)

_ ¬((0.01  x2
1 + x2

2) ^ (0.1  t) ^ (t  1) ^ (x2
1 + x2

2  1))]

Our prototype solver takes 26.533 seconds to synthesize the following function
as a solution to the problem for the bound kxk 2 [0.1, 1.0], t 2 [0.1, 1.0], and
ci 2 [45, 98] using � = 0.05:

V = 54.6950x1x2 + 90.2849x2
1 + 50.5376x2

2.

6 Conclusion

We have described delta-decision procedures for solving exists-forall formulas
in the first-order theory over the reals with computable real functions. These
formulas can encode a wide range of hard practical problems such as general
constrained optimization and nonlinear control synthesis. We use a branch-and-
prune framework, and design special pruning operators for universally-quantified
constraints such that the procedures can be proved to be delta-complete, where
suitable control of numerical errors is crucial. We demonstrated the effective-
ness of the procedures on various global optimization and Lyapunov function
synthesis problems.
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Conclusion
• To handle exist-forall problems in the delta-decision framework, we have designed pruning operators for ∀-

constraints.


• Finding (good) counterexamples is the key:


• Double-sided error control is necessary to avoid spurious counterexamples.


• Using local-optimization techniques can accelerate the solving process.


• Proved the correctness of the algorithm (See theorem 1 in the paper)


• The recursive nature of the algorithm (dReal calls dReal) matches with the problem's time complexity 
(Σ₂ᴾ).


• Demonstrated the effectiveness of the procedures on various global optimization and Lyapunov function 
synthesis problems.


• The tool is available at https://github.com/dreal/dreal4 (released under Apache 2.0)
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