
ℝeal Problems on the Road

Soonho Kong

soonho.kong@tri.global

June 23, 2018

Applications of Formal Methods to

Control Theory and Dynamical Systems

Carnegie Mellon University

1. Problem: How to show that our system is safe?

How do we know that our system is safe?

How do we know that our system is safe?

Road Testing?

https://www.rand.org/pubs/research_reports/RR1478.html

https://www.rand.org/pubs/research_reports/RR1478.html

How to accelerate the testing process?

AD System

AD System

Plant / Physics Model

AD System

Plant / Physics Model

Traffic  
Behavior Model

AD System

Road Objects

AD System

Plant / Physics Model

Traffic  
Behavior Model

AD System

Road Objects

Need a simulator to test a system

AD System

Plant / Physics Model

Traffic  
Behavior Model

AD System

CARLA: Open-source simulator for autonomous driving research

Simulation = Black-Box Testing

Input

Output

Si
m

ul
at

io
n

Output = Simulate(Input)

Simulation = Black-Box Testing

Input

Output

Keep simulating
until finding BAD examples

Simulation = Black-Box Testing

Input

Output

Keep simulating
until finding BAD examples

Simulation = Black-Box Testing

Input

Output

Keep simulating
until finding BAD examples

PROS: Cheaper than Road Testing 
 Trivially-Parallelizable (Cloud)

CONS: Curse of Dimensionality

Want to do: Accelerated Testing (e.g. concolic testing)  
/ Verification / Synthesis

=> Need symbolic representation of a system

2. Modeling Language

C++ Library which you can:

- Model dynamical systems

- Simulate dynamical systems with a suite of numerical integration routines

- Construct and solve optimization problems

- Analysis dynamical systems  

(local stability/controllability/observability analysis)

- Planning, Controller design, ...

Dynamical Systems  
(Continuous)

�27

ẋ = f(t, x, u, p)
<latexit sha1_base64="XK3EmbiC9ZgJIkNeEz1STo0CBss=">AAACK3icbZDLSsNAFIYn3q23qgsXbkaLoFJKIoJuhKIu3IgVrApNKZPpSR2cTMLMiVhCnsatfRpXilsfQ3B6WXg7MPDxn9ucP0ikMOi6r87Y+MTk1PTMbGFufmFxqbi8cm3iVHOo81jG+jZgBqRQUEeBEm4TDSwKJNwE9yf9/M0DaCNidYXdBJoR6ygRCs7QSq3imt+OMXvM6RENt7FMH8s0LdNkp1UsuRV3EPQveCMokVHUWsVPO4mnESjkkhnT8NwEmxnTKLiEvOCnBhLG71kHGhYVi8A0s8EBOd2ySpuGsbZPIR2o3zsyFhnTjQJbGTG8M79zffG/XCPF8LCZCZWkCIoPF4WppBjTvhu0LTRwlF0LjGth/0r5HdOMo/Ws4J+CvUXDuZ17kYBmGOvdzGe6EwmVD8Df8PtcsH55v935C9d7Fc+teJf7perxyLkZsk42yTbxyAGpkjNSI3XCSU6eyDPpOT3nxXlz3oelY86oZ5X8COfjC6y7piI=</latexit><latexit sha1_base64="XK3EmbiC9ZgJIkNeEz1STo0CBss=">AAACK3icbZDLSsNAFIYn3q23qgsXbkaLoFJKIoJuhKIu3IgVrApNKZPpSR2cTMLMiVhCnsatfRpXilsfQ3B6WXg7MPDxn9ucP0ikMOi6r87Y+MTk1PTMbGFufmFxqbi8cm3iVHOo81jG+jZgBqRQUEeBEm4TDSwKJNwE9yf9/M0DaCNidYXdBJoR6ygRCs7QSq3imt+OMXvM6RENt7FMH8s0LdNkp1UsuRV3EPQveCMokVHUWsVPO4mnESjkkhnT8NwEmxnTKLiEvOCnBhLG71kHGhYVi8A0s8EBOd2ySpuGsbZPIR2o3zsyFhnTjQJbGTG8M79zffG/XCPF8LCZCZWkCIoPF4WppBjTvhu0LTRwlF0LjGth/0r5HdOMo/Ws4J+CvUXDuZ17kYBmGOvdzGe6EwmVD8Df8PtcsH55v935C9d7Fc+teJf7perxyLkZsk42yTbxyAGpkjNSI3XCSU6eyDPpOT3nxXlz3oelY86oZ5X8COfjC6y7piI=</latexit><latexit sha1_base64="XK3EmbiC9ZgJIkNeEz1STo0CBss=">AAACK3icbZDLSsNAFIYn3q23qgsXbkaLoFJKIoJuhKIu3IgVrApNKZPpSR2cTMLMiVhCnsatfRpXilsfQ3B6WXg7MPDxn9ucP0ikMOi6r87Y+MTk1PTMbGFufmFxqbi8cm3iVHOo81jG+jZgBqRQUEeBEm4TDSwKJNwE9yf9/M0DaCNidYXdBJoR6ygRCs7QSq3imt+OMXvM6RENt7FMH8s0LdNkp1UsuRV3EPQveCMokVHUWsVPO4mnESjkkhnT8NwEmxnTKLiEvOCnBhLG71kHGhYVi8A0s8EBOd2ySpuGsbZPIR2o3zsyFhnTjQJbGTG8M79zffG/XCPF8LCZCZWkCIoPF4WppBjTvhu0LTRwlF0LjGth/0r5HdOMo/Ws4J+CvUXDuZ17kYBmGOvdzGe6EwmVD8Df8PtcsH55v935C9d7Fc+teJf7perxyLkZsk42yTbxyAGpkjNSI3XCSU6eyDPpOT3nxXlz3oelY86oZ5X8COfjC6y7piI=</latexit><latexit sha1_base64="XK3EmbiC9ZgJIkNeEz1STo0CBss=">AAACK3icbZDLSsNAFIYn3q23qgsXbkaLoFJKIoJuhKIu3IgVrApNKZPpSR2cTMLMiVhCnsatfRpXilsfQ3B6WXg7MPDxn9ucP0ikMOi6r87Y+MTk1PTMbGFufmFxqbi8cm3iVHOo81jG+jZgBqRQUEeBEm4TDSwKJNwE9yf9/M0DaCNidYXdBJoR6ygRCs7QSq3imt+OMXvM6RENt7FMH8s0LdNkp1UsuRV3EPQveCMokVHUWsVPO4mnESjkkhnT8NwEmxnTKLiEvOCnBhLG71kHGhYVi8A0s8EBOd2ySpuGsbZPIR2o3zsyFhnTjQJbGTG8M79zffG/XCPF8LCZCZWkCIoPF4WppBjTvhu0LTRwlF0LjGth/0r5HdOMo/Ws4J+CvUXDuZ17kYBmGOvdzGe6EwmVD8Df8PtcsH55v935C9d7Fc+teJf7perxyLkZsk42yTbxyAGpkjNSI3XCSU6eyDPpOT3nxXlz3oelY86oZ5X8COfjC6y7piI=</latexit>

y = g(t, x, u, p)
<latexit sha1_base64="U12JCIKC/GbhVXSaGgFQQkVGujs=">AAACJXicbZDNSgMxFIUz9b/+tbp0Ey2CSikzIuhGKOrCjahgW6FTSia9bUMzmSG5o5ahj+JWn8adCK58EsG0dqHVC4GPc+5Nbk4QS2HQdd+dzNT0zOzc/EJ2cWl5ZTWXX6uaKNEcKjySkb4NmAEpFFRQoITbWAMLAwm1oHc69Gt3oI2I1A32Y2iErKNEW3CGVmrm8n16TDs7WKQPRZoUabzbzBXckjsq+he8MRTIuK6auU+/FfEkBIVcMmPqnhtjI2UaBZcwyPqJgZjxHutA3aJiIZhGOlp9QLet0qLtSNujkI7UnxMpC43ph4HtDBl2zaQ3FP/z6gm2jxqpUHGCoPj3Q+1EUozoMAfaEho4yr4FxrWwu1LeZZpxtGll/TOwf9FwYe+9jEEzjPRe6jPdCYUajMDf9IectXl5k+n8hep+yXNL3vVBoXwyTm6ebJAtskM8ckjK5JxckQrh5J48kify7Dw7L86r8/bdmnHGM+vkVzkfXzqxo00=</latexit><latexit sha1_base64="U12JCIKC/GbhVXSaGgFQQkVGujs=">AAACJXicbZDNSgMxFIUz9b/+tbp0Ey2CSikzIuhGKOrCjahgW6FTSia9bUMzmSG5o5ahj+JWn8adCK58EsG0dqHVC4GPc+5Nbk4QS2HQdd+dzNT0zOzc/EJ2cWl5ZTWXX6uaKNEcKjySkb4NmAEpFFRQoITbWAMLAwm1oHc69Gt3oI2I1A32Y2iErKNEW3CGVmrm8n16TDs7WKQPRZoUabzbzBXckjsq+he8MRTIuK6auU+/FfEkBIVcMmPqnhtjI2UaBZcwyPqJgZjxHutA3aJiIZhGOlp9QLet0qLtSNujkI7UnxMpC43ph4HtDBl2zaQ3FP/z6gm2jxqpUHGCoPj3Q+1EUozoMAfaEho4yr4FxrWwu1LeZZpxtGll/TOwf9FwYe+9jEEzjPRe6jPdCYUajMDf9IectXl5k+n8hep+yXNL3vVBoXwyTm6ebJAtskM8ckjK5JxckQrh5J48kify7Dw7L86r8/bdmnHGM+vkVzkfXzqxo00=</latexit><latexit sha1_base64="U12JCIKC/GbhVXSaGgFQQkVGujs=">AAACJXicbZDNSgMxFIUz9b/+tbp0Ey2CSikzIuhGKOrCjahgW6FTSia9bUMzmSG5o5ahj+JWn8adCK58EsG0dqHVC4GPc+5Nbk4QS2HQdd+dzNT0zOzc/EJ2cWl5ZTWXX6uaKNEcKjySkb4NmAEpFFRQoITbWAMLAwm1oHc69Gt3oI2I1A32Y2iErKNEW3CGVmrm8n16TDs7WKQPRZoUabzbzBXckjsq+he8MRTIuK6auU+/FfEkBIVcMmPqnhtjI2UaBZcwyPqJgZjxHutA3aJiIZhGOlp9QLet0qLtSNujkI7UnxMpC43ph4HtDBl2zaQ3FP/z6gm2jxqpUHGCoPj3Q+1EUozoMAfaEho4yr4FxrWwu1LeZZpxtGll/TOwf9FwYe+9jEEzjPRe6jPdCYUajMDf9IectXl5k+n8hep+yXNL3vVBoXwyTm6ebJAtskM8ckjK5JxckQrh5J48kify7Dw7L86r8/bdmnHGM+vkVzkfXzqxo00=</latexit><latexit sha1_base64="U12JCIKC/GbhVXSaGgFQQkVGujs=">AAACJXicbZDNSgMxFIUz9b/+tbp0Ey2CSikzIuhGKOrCjahgW6FTSia9bUMzmSG5o5ahj+JWn8adCK58EsG0dqHVC4GPc+5Nbk4QS2HQdd+dzNT0zOzc/EJ2cWl5ZTWXX6uaKNEcKjySkb4NmAEpFFRQoITbWAMLAwm1oHc69Gt3oI2I1A32Y2iErKNEW3CGVmrm8n16TDs7WKQPRZoUabzbzBXckjsq+he8MRTIuK6auU+/FfEkBIVcMmPqnhtjI2UaBZcwyPqJgZjxHutA3aJiIZhGOlp9QLet0qLtSNujkI7UnxMpC43ph4HtDBl2zaQ3FP/z6gm2jxqpUHGCoPj3Q+1EUozoMAfaEho4yr4FxrWwu1LeZZpxtGll/TOwf9FwYe+9jEEzjPRe6jPdCYUajMDf9IectXl5k+n8hep+yXNL3vVBoXwyTm6ebJAtskM8ckjK5JxckQrh5J48kify7Dw7L86r8/bdmnHGM+vkVzkfXzqxo00=</latexit>

Diagram

�28

Diagram = A Graph of Systems = A System
Photo Credit: Alejandro Castro @ TRI

�29

Templated System Framework
System<T> where T can be:

 - double  

 - AutoDiff
 
 - symbolic::Expression

 for Simulation / Testing 

 for Optimization-based Analysis & Design
 
 for Symbolic Analysis & Verification (e.g. SMT)

�30

Templated System Framework

Gradient

System<T> where T can be:

 - double  

 - AutoDiff
 
 - symbolic::Expression

 for Simulation / Testing 

 for Optimization-based Analysis & Design
 
 for Symbolic Analysis & Verification (e.g. SMT)

�31

Templated System Framework
System<T> where T can be:

 - double  

 - AutoDiff
 
 - symbolic::Expression

f(x) = x3 + 4x2 � 5x+ 6
<latexit sha1_base64="AoZigEAE6DrgGWqIstQZzbdq+vw=">AAACLXicbZDLSgMxFIYz3q23qitxEy1CVSwztV42gqgLN6KC1UKnLZn0TA1mMkOSkZah+DRu7dO4EMStTyGYXhZq/SHw8Z9zkpzfizhT2rbfrJHRsfGJyanp1Mzs3PxCenHpVoWxpFCkIQ9lySMKOBNQ1ExzKEUSSOBxuPMeTrv1u0eQioXiRrciqASkIZjPKNHGqqVX/GxzEx/hZnUXb+NCs5rHO3tNg/u1dMbO2T3hYXAGkEEDXdXSX249pHEAQlNOlCo7dqQrCZGaUQ7tlBsriAh9IA0oGxQkAFVJeiu08YZx6tgPpTlC4577cyIhgVKtwDOdAdH36m+ta/5XK8faP6wkTESxBkH7D/kxxzrE3TxwnUmgmrcMECqZ+Sum90QSqk1qKfcMzC4SLsy9lxFIokO5lbhENgIm2j1w19wup0xezt90huE2n3PsnHNdyByfDJKbQqtoHWWRgw7QMTpHV6iIKHpCz+gFdayO9Wq9Wx/91hFrMLOMfsn6/AY1mqUx</latexit><latexit sha1_base64="AoZigEAE6DrgGWqIstQZzbdq+vw=">AAACLXicbZDLSgMxFIYz3q23qitxEy1CVSwztV42gqgLN6KC1UKnLZn0TA1mMkOSkZah+DRu7dO4EMStTyGYXhZq/SHw8Z9zkpzfizhT2rbfrJHRsfGJyanp1Mzs3PxCenHpVoWxpFCkIQ9lySMKOBNQ1ExzKEUSSOBxuPMeTrv1u0eQioXiRrciqASkIZjPKNHGqqVX/GxzEx/hZnUXb+NCs5rHO3tNg/u1dMbO2T3hYXAGkEEDXdXSX249pHEAQlNOlCo7dqQrCZGaUQ7tlBsriAh9IA0oGxQkAFVJeiu08YZx6tgPpTlC4577cyIhgVKtwDOdAdH36m+ta/5XK8faP6wkTESxBkH7D/kxxzrE3TxwnUmgmrcMECqZ+Sum90QSqk1qKfcMzC4SLsy9lxFIokO5lbhENgIm2j1w19wup0xezt90huE2n3PsnHNdyByfDJKbQqtoHWWRgw7QMTpHV6iIKHpCz+gFdayO9Wq9Wx/91hFrMLOMfsn6/AY1mqUx</latexit><latexit sha1_base64="AoZigEAE6DrgGWqIstQZzbdq+vw=">AAACLXicbZDLSgMxFIYz3q23qitxEy1CVSwztV42gqgLN6KC1UKnLZn0TA1mMkOSkZah+DRu7dO4EMStTyGYXhZq/SHw8Z9zkpzfizhT2rbfrJHRsfGJyanp1Mzs3PxCenHpVoWxpFCkIQ9lySMKOBNQ1ExzKEUSSOBxuPMeTrv1u0eQioXiRrciqASkIZjPKNHGqqVX/GxzEx/hZnUXb+NCs5rHO3tNg/u1dMbO2T3hYXAGkEEDXdXSX249pHEAQlNOlCo7dqQrCZGaUQ7tlBsriAh9IA0oGxQkAFVJeiu08YZx6tgPpTlC4577cyIhgVKtwDOdAdH36m+ta/5XK8faP6wkTESxBkH7D/kxxzrE3TxwnUmgmrcMECqZ+Sum90QSqk1qKfcMzC4SLsy9lxFIokO5lbhENgIm2j1w19wup0xezt90huE2n3PsnHNdyByfDJKbQqtoHWWRgw7QMTpHV6iIKHpCz+gFdayO9Wq9Wx/91hFrMLOMfsn6/AY1mqUx</latexit><latexit sha1_base64="AoZigEAE6DrgGWqIstQZzbdq+vw=">AAACLXicbZDLSgMxFIYz3q23qitxEy1CVSwztV42gqgLN6KC1UKnLZn0TA1mMkOSkZah+DRu7dO4EMStTyGYXhZq/SHw8Z9zkpzfizhT2rbfrJHRsfGJyanp1Mzs3PxCenHpVoWxpFCkIQ9lySMKOBNQ1ExzKEUSSOBxuPMeTrv1u0eQioXiRrciqASkIZjPKNHGqqVX/GxzEx/hZnUXb+NCs5rHO3tNg/u1dMbO2T3hYXAGkEEDXdXSX249pHEAQlNOlCo7dqQrCZGaUQ7tlBsriAh9IA0oGxQkAFVJeiu08YZx6tgPpTlC4577cyIhgVKtwDOdAdH36m+ta/5XK8faP6wkTESxBkH7D/kxxzrE3TxwnUmgmrcMECqZ+Sum90QSqk1qKfcMzC4SLsy9lxFIokO5lbhENgIm2j1w19wup0xezt90huE2n3PsnHNdyByfDJKbQqtoHWWRgw7QMTpHV6iIKHpCz+gFdayO9Wq9Wx/91hFrMLOMfsn6/AY1mqUx</latexit>

 for Simulation / Testing 

 for Optimization-based Analysis & Design
 
 for Symbolic Analysis & Verification (e.g. SMT)

3. ℝeal Problems

First-order encoding of ℝeal problems  
in control domain

• Planning / Reachability

…

~x0

~xt
0

~x1
~xt
1

~x2

~xt
k�1

~xk

~xt
k

Unsafe

Init

step 0 step 1 … step k

modeq0 modeq1 modeqk

flowq0(~x0, ~x
t
0, t0)

flowq1(~x1, ~x
t
1, t1)

flowqk(~xk, ~x
t
k, tk)

jumpq0!q1(~x
t
0, ~x1) jumpq1!q2(~x

t
1, ~x2)

jumpqk�1!qk(~x
t
k�1, ~xk)

9~x0, ~x1, . . . , ~xk9~xt
0, ~x

t
1, . . . , ~x

t
k9t0, t1, . . . , tk

Init(~x0) ^ flowq0(~x0, ~x
t
0, t0) ^ jumpq0!q1(~x

t
0, ~x1)^

flowq1(~x1, ~x
t
1, t1) ^ jumpq1!q2(~x

t
1, ~x2)^

. . .

f lowqk(~xk, ~x
t
k, tk) ^ Unsafe(~xk)

t

First-order encoding of problems  
in control domain

• Planning / Reachability (∃)

• Trajectory Optimization / Optimal Control
Shooting a target using

a cannon

Cannon position

Target (x_T, y_T)

Goal: Find launch conditions that minimize
launch energy while hitting the target

Thursday, July 8, 2010

Find launch conditions that minimize launch energy  
while hitting the target

First-order encoding of problems  
in control domain

• Planning / Reachability (∃)

• Trajectory Optimization / Optimal Control
Shooting a target using

a cannon

Cannon position

Target (x_T, y_T)

Goal: Find launch conditions that minimize
launch energy while hitting the target

Thursday, July 8, 2010

Find launch conditions that minimize launch energy  
while hitting the target

=> Constrained Optimization Problem min f(x) s.t. �(x)

9x.8y. �(x) ^ �(y) ! f(x) f(y)

is logically

First-order encoding of problems  
in control domain

• Planning / Reachability (∃)

• Trajectory Optimization / Optimal Control (∃∀)

• Lyapunov-function (stability) / Barrier certificate (safety)

∀x ∈ X0 ⟹ B(x) ≤ 0

∀x ∈ U ⟹ B(x) > 0

∀x . B(x) = 0 ⟹
∂B
∂x

f(x) ≤ 0

X0

Unsafe

B(x) = 0

Find a function, B : X → R, which satisfies the following
conditions to show that it is not possible to have a trajectory
starting in X0 and reaching Unsafe:

First-order encoding of problems  
in control domain

• Planning / Reachability (∃)

• Trajectory Optimization / Optimal Control (∃∀)

• Lyapunov-function / Barrier certificate (∃∀)

First-order encoding of problems  
in control domain

• Planning / Reachability (∃)

• Trajectory Optimization / Optimal Control (∃∀)

• Lyapunov-function / Barrier certificate (∃∀)

• Robust Optimal Control / Robust Optimization (∃∀∃) 
 
Minimize c(x) 
s.t. g(x, u) for all u ∈ U. 
 
Encoding: 
 ∃x. (∀u ∈ U. g(x, u)) ∧ (∀y. (∀u ∈ U. g(y, u)) ⇒ c(x) ≤ c(y)) 
=> ∃x. (∀u ∈ U. g(x, u)) ∧ (∀y. (∃u ∈ U. ¬g(y, u)) ∨ (c(x) ≤ c(y)))

4. How to Solve it?

Decision Problems over the Reals

Given an arbitrary first-order sentence over , such ashR,�,Fi

' = Q[l1,u1]
1 x1 . . . Q

[ln,un]
n xn.

^

i

0

@
_

j

fi,j(~x) > 0 _
_

k

fi,k(~x) � 0

1

A

where , can we compute whether is true or false? f 2 F '

• Complexity results of non-linear arithmetic over the Reals
• Decidable if only contains polynomials [Tarski51]
• Undecidable if includes trigonometric functions (i.e. sin)

• Real-world problems contain complex nonlinear
functions  
(trigonometric functions, log, exp, ODEs)

'
'

Delta-decision Problem
• Given a first-order formula over the Real, , and a positive rational number ,

delta-decision problem asks for one of the following answers:

• UNSAT: is unsatisfiable

• δ-SAT : is satisfiable.

'

�'

'��

where is called the δ-weakening of which is formally defined as follows: ''��

• It is shown that this problem is decidable for signatures with computable
functions [LICS12]

• The complexity for existential problems is NP (with P-time computable
functions) or PSPACE (with Lipschitz ODEs) [LICS12]

'�� = Q[l1,u1]
1 x1...Q

[ln,un]
n xn.

^

i

0

@
_

j

fi,j(~x) > �� _
_

j

fi,k(~x) � ��

1

A

 42

SAT
Solver

Theory 
Solver

 -SAT + Solution  
or 

UNSAT + Proof

�

�

Logic Formula

Numerical
Error

��

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment  

is feasible under the first order theory of Real

Design of Solver: Big Picture

 43

SAT
Solver

Theory 
Solver

List of Constraints

 -SAT (+Solution)  
or

UNSAT (+Explanation)

Boolean Search
Non-chronological Backtracking

Learning 
…
 

(Discrete Domain)

Constraints Solving
Validated Numerics

Optimization
Simulation/Sampling

… 
(Continuous Domain)

�

Design of Solver: Big Picture

Top-down/Bottom Approaches  
in Theory Solver

 44

by Local Optimization

Top-Down Approach

Maintain a set of possible solutions
Useful to show UNSAT

Validated Numerics  
(i.e. Interval-based methods)

Bottom-Up Approach

Sample points and test them
Useful to show SAT  

Use local-optimization to improve

Pruning Branch

Fixedpoint
Computation

Safely reduce a search space  
without removing solutions

Partition a search space  
into two sub-spaces

An Algorithm in Theory Solver:  
ICP(Interval Constraint Propagation)

 45

δ-sat Unsat

ε

 46

Two Termination Conditions of ICP

 47

Pruning

Branching

ICP Algorithm

5. How to Solve ∃∀

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Delta-Decision Procedures for Exists-Forall
Problems over the Reals

Soonho Kong1, Armando Solar-Lezama2, and Sicun Gao3

1 Toyota Research Institute
soonho.kong@tri.global

2 Massachusetts Institute of Technology, USA
asolar@csail.mit.edu

3 University of California, San Diego, USA
sicung@ucsd.edu

Abstract. We propose �-complete decision procedures for solving satis-
fiability of nonlinear SMT problems over real numbers that contain uni-
versal quantification and a wide range of nonlinear functions. The meth-
ods combine interval constraint propagation, counterexample-guided syn-
thesis, and numerical optimization. In particular, we show how to handle
the interleaving of numerical and symbolic computation to ensure delta-
completeness in quantified reasoning. We demonstrate that the proposed
algorithms can handle various challenging global optimization and con-
trol synthesis problems that are beyond the reach of existing solvers.

1 Introduction

Much progress has been made in the framework of delta-decision procedures
for solving nonlinear Satisfiability Modulo Theories (SMT) problems over real
numbers [1,2]. Delta-decision procedures allow one-sided bounded numerical er-
rors, which is a practically useful relaxation that significantly reduces the com-
putational complexity of the problems. With such relaxation, SMT problems
with hundreds of variables and highly nonlinear constraints (such as differen-
tial equations) have been solved in practical applications [3]. Existing work in
this direction has focused on satisfiability of quantifier-free SMT problems. Go-
ing one level up, SMT problems with both free and universally quantified vari-
ables, which correspond to 98-formulas over the reals, are much more expres-
sive. For instance, such formulas can encode the search for robust control laws in
highly nonlinear dynamical systems, a central problem in robotics. Non-convex,
multi-objective, and disjunctive optimization problems can all be encoded as
98-formulas, through the natural definition of “finding some x such that for all
other x0, x is better than x0 with respect to certain constraints.” Many other
examples from various areas are listed in [4].

Counterexample-Guided Inductive Synthesis (CEGIS) [5] is a framework for
program synthesis that can be applied to solve generic exists-forall problems. The
idea is to break the process of solving 98-formulas into a loop between synthe-
sis and verification. The synthesis procedure finds solutions to the existentially

CAV'18

Problem

∃x . ∀y . φ(x, y)

where ϕ can include an arbitrary Boolean combination of
numerically computable functions (e.g. sin, cos, exp)

Problem

∃x . ∀y . φ(x, y)

We can encode the following problems: 

- Optimization
- Non-linear / Non-convex

- Global

- Constrained 

- Synthesis
- Program

- Controller (e.g. Lyapunov function, Barrier function)

Simple Case:  
Unconstrained Global Optimization

min f(x)

∃x . ∀y . f(x) ≤ f(y)

x

f(x)

Simple Case:  
Unconstrained Global Optimization

∃x . ∀y . f(x) ≤ f(y)
Remark: 

Finding the exact global optimum is undecidable  
when we allow functions such as sin, cos.

x

f(x)

Simple Case:  
Unconstrained Global Optimization

Instead, we want to find a small interval Iₓ such that forall x in Iₓ :

f(x)

δ

Iₓ

∀y . f(x) ≤ f(y) + δ
Note that this problem is decidable (Σ₁)

Idea 1: Counterexample Refinement

f(x) > f(y)
Find a counterexample y such that for an x in Iₓ¹

and use it to reduce Iₓ¹ to Iₓ².

Use it as a contractor for a forall constraint.

Iₓ¹

Iₓ²

Finding a Counterexample

f(x) > f(y)
How do we find such y?

Note that the problem is in general undecidable again.

We use delta-decision solver to find a counterexample:

Solve(f(x) > f(y), δ′�)

Problem of spurious counterexamples

f(x) > f(y)
f(x) + δ′� > f(y)

Iₓ

y x

f(y)
f(x)

f(x) + δ'

Spurious counterexamples give NO pruning power.

Consider a δ-SAT case where Solve(f(x) > f(y), δ') finds (x, y) such that:

Idea 2: Double-sided Error Control

Solve(f(x) > f(y), δ′�)

Solve(f(x) > f(y) + ϵ, δ′�)

Instead of solving the following to counterexample:

Solve the following which strengthened the CE query by ε:

Q: How to pick δ' and ε given δ?

Idea 2: Double-sided Error Control
Solve(f(x) > f(y) + ϵ, δ′�)
UNSAT CASE:

∀y . f(x) ≤ f(y) + ϵ
f(x)

δ

Iₓ

∀y . f(x) ≤ f(y) + δ
Note that we wanted to satisfy:

So we have:

ϵ < δ

Idea 2: Double-sided Error Control
Solve(f(x) > f(y) + ϵ, δ′�)

We want this to be a true counterexample:

That is,

ϵ − δ′� > 0

f(x) + δ′� > f(y) + ϵ
δ-SAT CASE: We have (x, y) such that:

f(x) > f(y) + (ϵ − δ′�)

δ′� < ϵ
Iₓ

yx

f(y)

f(x)
ε - δ'

Idea 2: Double-sided Error Control

Solve(f(x) > f(y), δ′�)

Solve(f(x) > f(y) + ϵ, δ′�)

Instead of solving the following to counterexample:

Solve the following which strengthened the CE query by ε:

Q: How to pick δ' and ε given δ?

δ′� < ϵ < δ

Idea 2: Double-sided Error Control

special 8-pruning operators in an overall branch-and-prune framework to solve
the full formula in a �-complete way. A special technical difficulty for ensuring
�-completeness is to control numerical errors in the recursive search for coun-
terexamples, which we solve using double-sided error control. We also improve
quality of counterexamples using local-optimization algorithms in the 8-pruning
operations, which we call locally-optimized counterexamples.

In the following sections we describe these steps in detail. For notational
simplicity we will omit vector symbols and assume all variable names can directly
refer to vectors of variables.

3.1 8-Clauses as Pruning Operators

Consider an arbitrary CNF8-formula4

'(x) :=
m̂

i=0

⇣
8y(

ki_

j=0

fij(x, y) � 0)
⌘
.

It is a conjunction of 8-clauses as defined in Definition 2. Consequently, we
only need to define pruning operators for 8-clauses so that they can be used in
a standard branch-and-prune framework. The full algorithm for such pruning
operation is described in Algorithm 2.

Algorithm 2 8-Clause Pruning

1: function Prune(Bx, By, 8y
Wk

i=0 fi(x, y) � 0, �0, ", �)
2: repeat

3: Bprev
x Bx

4:
V

i fi(x, y) < 0
5: +" Strengthen(, ")
6: b Solve(y, +", �0) . 0 < �0 < " < � should hold.
7: if b = ; then

8: return Bx . No counterexample found, stop pruning.
9: end if

10: for i 2 {0, ..., k} do

11: Bi Bx \ Prune
⇣
Bx, fi(x, b) � 0

⌘

12: end for

13: Bx
Fk

i=0 Bi

14: until Bx 6= Bprev
x

15: return Bx

16: end function

4 Note that without loss of generality we only use nonstrict inequality here, since in
the context of �-decisions the distinction between strict and nonstrict inequalities as
not important, as explained in Definition 3.

Idea 3: Local Optimization

X4

Global Minimum

X3
X2
X1
X0

CE1

CE2

CE3
CE4

(a) Without local optimization.

X2

Global Minimum

X1
X0

CE1

CE2CE1’

Local

Optimization

Local
Optimization

CE2’

(b) With local optimization.

Fig. 1: Illustrations of the pruning algorithm for CNF8-formula with and without
using local optimization.

uses those counterexamples to contract the interval assignment on X from X0

to X1, X2, X3, and X4 in sequence. In the search for a counterexample (Line 6
of Algorithm 2), it solves the strengthened query, f(x) > f(y) + �. Note that
the query only requires a counterexample y = b to be �-away from a candidate
x while it is clear that the further a counterexample is away from candidates,
the more effective the pruning algorithm is.

Based on this observation, we present a way to improve the performance of
the pruning algorithm for CNF8-formulas. After we obtain a counterexample b,
we locally-optimize it with the counterexample query so that it “further vio-
lates” the constraints. Figure 1b illustrates this idea. The algorithm first finds
a counterexample CE1 then refines it to CE0

1 by using a local-optimization al-
gorithm (similarly, CE2 ! CE0

2). Clearly, this refined counterexample gives a
stronger pruning power than the original one. This refinement process can also
help the performance of the algorithm by reducing the number of total iterations
in the fixedpoint loop.

The suggested method is based on the assumption that local-optimization
techniques are cheaper than finding a global counterexample using interval prop-
agation techniques. In our experiments, we observed that this assumption holds
practically. We will report the details in Section 5.

4 �-Completeness

We now prove that the proposed algorithm is �-complete for arbitrary CNF8

formulas in LRF . In the work of [2], �-completeness has been proved for branch-
and-prune for ground SMT problems, under the assumption that the pruning
operators are well-defined. Thus, the key for our proof here is to show that the
8-pruning operators satisfy the conditions of well-definedness.

The notion of a well-defined pruning operator is defined in [2] as follows.

Case Study: Nonlinear Global Optimization

(a) Ackley Function. (b) EggHolder Function.

(c) Holder Table2 Function. (d) Levi N13 Function.

(e) Ripple 1 Function. (f) Testtube Holder Function.

Fig. 2: Nonlinear Global Optimization Examples.

can be encoded as the logic formula:

'(x) ^ 8y
⇣
'(y) ! f(x) f(y)

⌘
.

As plotted in Figure 2, these optimization problems are non-trivial: they
are highly non-convex problems that are designed to test global optimization or
genetic programming algorithms. Many such functions have a large number of
local minima. For example, Ripple 1 Function [27]

f(x1, x2) =
2X

i=1

�e�2(log 2)(x1�0.1
0.8)

2

(sin6(5⇡xi) + 0.1 cos2(500⇡xi))

Name Solution Time (sec)
Global No L-Opt. L-Opt. No L-Opt. L-Opt. Speed Up

Ackley 2D 0.00000 0.00000 0.00000 0.0579 0.0047 12.32
Ackley 4D 0.00000 0.00005 0.00000 8.2256 0.1930 42.62
Aluffi Pentini -0.35230 -0.35231 -0.35239 0.0321 0.1868 0.17
Beale 0.00000 0.00003 0.00000 0.0317 0.0615 0.52
Bohachevsky1 0.00000 0.00006 0.00000 0.0094 0.0020 4.70
Booth 0.00000 0.00006 0.00000 0.5035 0.0020 251.75
Brent 0.00000 0.00006 0.00000 0.0095 0.0017 5.59
Bukin6 0.00000 0.00003 0.00003 0.0093 0.0083 1.12
Cross in Tray -2.06261 -2.06254 -2.06260 0.5669 0.1623 3.49
Easom -1.00000 -1.00000 -1.00000 0.0061 0.0030 2.03
EggHolder -959.64070 -959.64030 -959.64031 0.0446 0.0211 2.11
Holder Table2 -19.20850 -19.20846 -19.20845 52.9152 41.7004 1.27
Levi N13 0.00000 0.00000 0.00000 0.1383 0.0034 40.68
Ripple 1 -2.20000 -2.20000 -2.20000 0.0059 0.0065 0.91
Schaffer F6 0.00000 0.00004 0.00000 0.0531 0.0056 9.48
Testtube Holder -10.87230 -10.87227 -10.87230 0.0636 0.0035 18.17
Trefethen -3.30687 -3.30681 -3.30685 3.0689 1.4916 2.06
W Wavy 0.00000 0.00000 0.00000 0.1234 0.0138 8.94
Zettl -0.00379 -0.00375 -0.00379 0.0070 0.0069 1.01
Rosenbrock Cubic 0.00000 0.00005 0.00002 0.0045 0.0036 1.25
Rosenbrock Disk 0.00000 0.00002 0.00000 0.0036 0.0028 1.29
Mishra Bird -106.76454 -106.76449 -106.76451 1.8496 0.9122 2.03
Townsend -2.02399 -2.02385 -2.02390 2.6216 0.5817 4.51
Simionescu -0.07262 -0.07199 -0.07200 0.0064 0.0048 1.33

Table 1: Experimental results for nonlinear global optimization problems: The
first 19 problems (Ackley 2D – Zettl) are unconstrained optimization problems
and the last five problems (Rosenbrock Cubic – Simionescu) are constrained
optimization problems. We ran our prototype solver over those instances with
and without local-optimization option (“L-Opt.” and “No L-Opt.” columns) and
compared the results. We chose � = 0.0001 for all instances.

Parameters In the experiments, we chose the strengthening parameter ✏ = 0.99�
and the weakening parameter in the counterexample search �0 = 0.98�. In each
call to NLopt, we used 1e�6 for both of absolute and relative tolerances on
function value, 1e�3 seconds for a timeout, and 100 for the maximum number
of evaluations. These values are used as stopping criteria in NLopt.

5.1 Nonlinear Global Optimization

We encoded a range of highly nonlinear 98-problems from constrained and un-
constrained optimization literature [27,28]. Note that the standard optimization
problem

min f(x) s.t. '(x), x 2 Rn,

Case Study: Nonlinear Global Optimization

Case Study: Synthesizing Lyapunov Function

defined in xi 2 [0, 1] has 252004 local minima with the global minima f(0.1, 0.1) =
�2.2. As a result, local-optimization algorithms such as gradient-descent would
not work for these problems for itself. By encoding them as 98-problems, we can
perform guaranteed global optimization on these problems.

Table 1 provides a summary of the experiment results. First, it shows that we
can find minimum values which are close to the known global solutions. Second,
it shows that enabling the local-optimization technique speeds up the solving
process significantly for 20 instances out of 23 instances.

5.2 Synthesizing Lyapunov Function for Dynamical System

We show that the proposed algorithm is able to synthesize Lyapunov functions
for nonlinear dynamic systems described by a set of ODEs:

ẋ(t) = fi(x(t)), 8x(t) 2 Xi.

Our approach is different from a recent related-work [29] where they used
dReal only to verify a candidate function which was found by a simulation-
guided algorithm. In contrast, we want to do both of search and verify steps by
solving a single 98-formula. Note that to verify a Lyapunov candidate function v :
X ! R+, we need to show that the function v satisfies the following conditions:

8x 2 X \ 0 v(x)(0) = 0

8x 2 X rv(x(t))T · fi(x(t)) 0.

We assume that a Lyapunov function is a polynomial of some fixed degrees
over x, that is, v(x) = zTPz where z is a vector of monomials over x and
P is a symmetric matrix. Then, we can encode this synthesis problem into the
98-formula:

9P [(v(x) = (zTPz))^
(8x 2 X \ 0 v(x)(0) = 0)^
(8x 2 X rv(x(t))T · fi(x(t)) 0)]

In the following sections, we show that we can handle two examples in [29].

Normalized Pendulum Given a standard pendulum system with normalized
parameters

ẋ1

ẋ2

�
=

x2

� sin(x1)� x2

�

and a quadratic template for a Lyapunov function v(x) = xTPx = c1x1x2 +
c2x2

1+ c3x2
2, we can encode this synthesis problem into the following 98-formula:

9c1c2c3 8x1x2 [((50c3x1x2 + 50x2
1c1 + 50x2

2c2 > 0.5)^
(100c1x1x2 + 50x2c3 + (�x2 � sin(x1)(50x1c3 + 100x2c2)) < �0.5))_
¬((0.01 x2

1 + x2
2) ^ (x2

1 + x2
2 1))]

Problem: Find a Lyapunov function for a dynamical system, v : X → ℝ⁺, which satisfies the following condition:

defined in xi 2 [0, 1] has 252004 local minima with the global minima f(0.1, 0.1) =
�2.2. As a result, local-optimization algorithms such as gradient-descent would
not work for these problems for itself. By encoding them as 98-problems, we can
perform guaranteed global optimization on these problems.

Table 1 provides a summary of the experiment results. First, it shows that we
can find minimum values which are close to the known global solutions. Second,
it shows that enabling the local-optimization technique speeds up the solving
process significantly for 20 instances out of 23 instances.

5.2 Synthesizing Lyapunov Function for Dynamical System

We show that the proposed algorithm is able to synthesize Lyapunov functions
for nonlinear dynamic systems described by a set of ODEs:

ẋ(t) = fi(x(t)), 8x(t) 2 Xi.

Our approach is different from a recent related-work [29] where they used
dReal only to verify a candidate function which was found by a simulation-
guided algorithm. In contrast, we want to do both of search and verify steps by
solving a single 98-formula. Note that to verify a Lyapunov candidate function v :
X ! R+, we need to show that the function v satisfies the following conditions:

8x 2 X \ 0 v(x)(0) = 0

8x 2 X rv(x(t))T · fi(x(t)) 0.

We assume that a Lyapunov function is a polynomial of some fixed degrees
over x, that is, v(x) = zTPz where z is a vector of monomials over x and
P is a symmetric matrix. Then, we can encode this synthesis problem into the
98-formula:

9P [(v(x) = (zTPz))^
(8x 2 X \ 0 v(x)(0) = 0)^
(8x 2 X rv(x(t))T · fi(x(t)) 0)]

In the following sections, we show that we can handle two examples in [29].

Normalized Pendulum Given a standard pendulum system with normalized
parameters

ẋ1

ẋ2

�
=

x2

� sin(x1)� x2

�

and a quadratic template for a Lyapunov function v(x) = xTPx = c1x1x2 +
c2x2

1+ c3x2
2, we can encode this synthesis problem into the following 98-formula:

9c1c2c3 8x1x2 [((50c3x1x2 + 50x2
1c1 + 50x2

2c2 > 0.5)^
(100c1x1x2 + 50x2c3 + (�x2 � sin(x1)(50x1c3 + 100x2c2)) < �0.5))_
¬((0.01 x2

1 + x2
2) ^ (x2

1 + x2
2 1))]

where the system is described by a system of ODEs:

Case Study: Synthesizing Lyapunov Function

defined in xi 2 [0, 1] has 252004 local minima with the global minima f(0.1, 0.1) =
�2.2. As a result, local-optimization algorithms such as gradient-descent would
not work for these problems for itself. By encoding them as 98-problems, we can
perform guaranteed global optimization on these problems.

Table 1 provides a summary of the experiment results. First, it shows that we
can find minimum values which are close to the known global solutions. Second,
it shows that enabling the local-optimization technique speeds up the solving
process significantly for 20 instances out of 23 instances.

5.2 Synthesizing Lyapunov Function for Dynamical System

We show that the proposed algorithm is able to synthesize Lyapunov functions
for nonlinear dynamic systems described by a set of ODEs:

ẋ(t) = fi(x(t)), 8x(t) 2 Xi.

Our approach is different from a recent related-work [29] where they used
dReal only to verify a candidate function which was found by a simulation-
guided algorithm. In contrast, we want to do both of search and verify steps by
solving a single 98-formula. Note that to verify a Lyapunov candidate function v :
X ! R+, we need to show that the function v satisfies the following conditions:

8x 2 X \ 0 v(x)(0) = 0

8x 2 X rv(x(t))T · fi(x(t)) 0.

We assume that a Lyapunov function is a polynomial of some fixed degrees
over x, that is, v(x) = zTPz where z is a vector of monomials over x and
P is a symmetric matrix. Then, we can encode this synthesis problem into the
98-formula:

9P [(v(x) = (zTPz))^
(8x 2 X \ 0 v(x)(0) = 0)^
(8x 2 X rv(x(t))T · fi(x(t)) 0)]

In the following sections, we show that we can handle two examples in [29].

Normalized Pendulum Given a standard pendulum system with normalized
parameters

ẋ1

ẋ2

�
=

x2

� sin(x1)� x2

�

and a quadratic template for a Lyapunov function v(x) = xTPx = c1x1x2 +
c2x2

1+ c3x2
2, we can encode this synthesis problem into the following 98-formula:

9c1c2c3 8x1x2 [((50c3x1x2 + 50x2
1c1 + 50x2

2c2 > 0.5)^
(100c1x1x2 + 50x2c3 + (�x2 � sin(x1)(50x1c3 + 100x2c2)) < �0.5))_
¬((0.01 x2

1 + x2
2) ^ (x2

1 + x2
2 1))]

Our prototype solver takes 44.184 seconds to synthesize the following function
as a solution to the problem for the bound kxk 2 [0.1, 1.0] and ci 2 [0.1, 100]
using � = 0.05:

v = 40.6843x1x2 + 35.6870x2
1 + 84.3906x2

2.

Damped Mathieu System Mathieu dynamics are time-varying and defined
by the following ODEs:

ẋ1

ẋ2

�
=

x2

�x2 � (2 + sin(t))x1

�
.

Using a quadratic template for a Lyapunov function v(x) = xTPx = c1x1x2+
c2x2

1+ c3x2
2, we can encode this synthesis problem into the following 98-formula:

9c1c2c3 8x1x2t [(50x1x2c2 + 50x2
1c1 + 50x2

2c3 > 0)^
(100c1x1x2 + 50x2c2 + (�x2 � x1(2 + sin(t)))(50x1c2 + 100x2c3) < 0)

_ ¬((0.01 x2
1 + x2

2) ^ (0.1 t) ^ (t 1) ^ (x2
1 + x2

2 1))]

Our prototype solver takes 26.533 seconds to synthesize the following function
as a solution to the problem for the bound kxk 2 [0.1, 1.0], t 2 [0.1, 1.0], and
ci 2 [45, 98] using � = 0.05:

V = 54.6950x1x2 + 90.2849x2
1 + 50.5376x2

2.

6 Conclusion

We have described delta-decision procedures for solving exists-forall formulas
in the first-order theory over the reals with computable real functions. These
formulas can encode a wide range of hard practical problems such as general
constrained optimization and nonlinear control synthesis. We use a branch-and-
prune framework, and design special pruning operators for universally-quantified
constraints such that the procedures can be proved to be delta-complete, where
suitable control of numerical errors is crucial. We demonstrated the effective-
ness of the procedures on various global optimization and Lyapunov function
synthesis problems.

References

1. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: LICS.
(2012) 305–314

2. Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfia-
bility over the reals. In Gramlich, B., Miller, D., Sattler, U., eds.: IJCAR. Volume
7364 of Lecture Notes in Computer Science., Springer (2012) 286–300

Case Study: Synthesizing Lyapunov Function
Our prototype solver takes 44.184 seconds to synthesize the following function

as a solution to the problem for the bound kxk 2 [0.1, 1.0] and ci 2 [0.1, 100]
using � = 0.05:

v = 40.6843x1x2 + 35.6870x2
1 + 84.3906x2

2.

Damped Mathieu System Mathieu dynamics are time-varying and defined
by the following ODEs:

ẋ1

ẋ2

�
=

x2

�x2 � (2 + sin(t))x1

�
.

Using a quadratic template for a Lyapunov function v(x) = xTPx = c1x1x2+
c2x2

1+ c3x2
2, we can encode this synthesis problem into the following 98-formula:

9c1c2c3 8x1x2t [(50x1x2c2 + 50x2
1c1 + 50x2

2c3 > 0)^
(100c1x1x2 + 50x2c2 + (�x2 � x1(2 + sin(t)))(50x1c2 + 100x2c3) < 0)

_ ¬((0.01 x2
1 + x2

2) ^ (0.1 t) ^ (t 1) ^ (x2
1 + x2

2 1))]

Our prototype solver takes 26.533 seconds to synthesize the following function
as a solution to the problem for the bound kxk 2 [0.1, 1.0], t 2 [0.1, 1.0], and
ci 2 [45, 98] using � = 0.05:

V = 54.6950x1x2 + 90.2849x2
1 + 50.5376x2

2.

6 Conclusion

We have described delta-decision procedures for solving exists-forall formulas
in the first-order theory over the reals with computable real functions. These
formulas can encode a wide range of hard practical problems such as general
constrained optimization and nonlinear control synthesis. We use a branch-and-
prune framework, and design special pruning operators for universally-quantified
constraints such that the procedures can be proved to be delta-complete, where
suitable control of numerical errors is crucial. We demonstrated the effective-
ness of the procedures on various global optimization and Lyapunov function
synthesis problems.

References

1. Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: LICS.
(2012) 305–314

2. Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfia-
bility over the reals. In Gramlich, B., Miller, D., Sattler, U., eds.: IJCAR. Volume
7364 of Lecture Notes in Computer Science., Springer (2012) 286–300

To conclude:

1. Road Testing is expensive & not scalable.

2. Simulation is the next hope.

3. But we still need advanced techniques such as 

white-box fuzzing, verification & synthesis.

4. Find a good modeling tool so that you can extract symbolic representations.

5. Many interesting control problems can be encoded into first-order logic formulas.

6. Delta-decision problems: 

For verification, using delta-weakening allows us to fix “near-failure” systems. 

For synthesis, a dual notion of delta-strengthening produces robust designs.

7. We have an implementation (dReal) which can handle ∃ and ∃∀ formulas.  

(∃∀∃ support is work-in-progress).

To conclude:

1. Road Testing is expensive & not scalable.

2. Simulation is the next hope.

3. But we still need advanced techniques such as 

white-box fuzzing, verification & synthesis.

4. Find a good modeling tool so that you can extract symbolic representations.

5. Many interesting control problems can be encoded into first-order logic formulas.

6. Delta-decision problems: 

For verification, using delta-weakening allows us to fix “near-failure” systems. 

For synthesis, a dual notion of delta-strengthening produces robust designs.

7. We have an implementation (dReal) which can handle ∃ and ∃∀ formulas.  

(∃∀∃ support is work-in-progress).

To conclude:

1. Road Testing is expensive & not scalable.

2. Simulation is the next hope.

3. But we still need advanced techniques such as 

white-box fuzzing, verification & synthesis.

4. Find a good modeling tool so that you can extract symbolic representations.

5. Many interesting control problems can be encoded into first-order logic formulas.

6. Delta-decision problems: 

For verification, using delta-weakening allows us to fix “near-failure” systems. 

For synthesis, a dual notion of delta-strengthening produces robust designs.

7. We have an implementation (dReal) which can handle ∃ and ∃∀ formulas.  

(∃∀∃ support is work-in-progress).

To conclude:

1. Road Testing is expensive & not scalable.

2. Simulation is the next hope.

3. But we still need advanced techniques such as 

white-box fuzzing, verification & synthesis.

4. Find a good modeling tool so that you can extract symbolic representations.

5. Many interesting control problems can be encoded into first-order logic formulas.

6. Delta-decision problems: 

For verification, using delta-weakening allows us to fix “near-failure” systems. 

For synthesis, a dual notion of delta-strengthening produces robust designs.

7. We have an implementation (dReal) which can handle ∃ and ∃∀ formulas.  

(∃∀∃ support is work-in-progress).

To conclude:

1. Road Testing is expensive & not scalable.

2. Simulation is the next hope.

3. But we still need advanced techniques such as 

white-box fuzzing, verification & synthesis.

4. Find a good modeling tool so that you can extract symbolic representations.

5. Many interesting control problems can be encoded into first-order logic formulas.

6. Delta-decision problems: 

For verification, using delta-weakening allows us to fix “near-failure” systems. 

For synthesis, a dual notion of delta-strengthening produces robust designs.

7. We have an implementation (dReal) which can handle ∃ and ∃∀ formulas.  

(∃∀∃ support is work-in-progress).

To conclude:

1. Road Testing is expensive & not scalable.

2. Simulation is the next hope.

3. But we still need advanced techniques such as 

white-box fuzzing, verification & synthesis.

4. Find a good modeling tool so that you can extract symbolic representations.

5. Many interesting control problems can be encoded into first-order logic formulas.

6. Delta-decision problems: 

For verification, using delta-weakening allows us to fix “near-failure” systems. 

For synthesis, a dual notion of delta-strengthening produces robust designs.

7. We have an implementation (dReal) which can handle ∃ and ∃∀ formulas.  

(∃∀∃ support is work-in-progress).

To conclude:

1. Road Testing is expensive & not scalable.

2. Simulation is the next hope.

3. But we still need advanced techniques such as 

white-box fuzzing, verification & synthesis.

4. Find a good modeling tool so that you can extract symbolic representations.

5. Many interesting control problems can be encoded into first-order logic formulas.

6. Delta-decision problems: 

For verification, using delta-weakening allows us to fix “near-failure” systems. 

For synthesis, a dual notion of delta-strengthening produces robust designs.

7. We have an implementation (dReal) which can handle ∃ and ∃∀ formulas.  

(∃∀∃ support is work-in-progress).

To conclude:

1. Road Testing is expensive & not scalable.

2. Simulation is the next hope.

3. But we still need advanced techniques such as 

white-box fuzzing, verification & synthesis.

4. Find a good modeling tool so that you can extract symbolic representations.

5. Many interesting control problems can be encoded into first-order logic formulas.

6. Delta-decision problems: 

For verification, using delta-weakening allows us to fix “near-failure” systems. 

For synthesis, a dual notion of delta-strengthening produces robust designs.

7. We have an implementation (dReal) which can handle ∃ and ∃∀ formulas.  

(∃∀∃ support is work-in-progress).

