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1. Problem: How to show that our system is safe?



How do we know that our system is safe?



How do we know that our system is safe?
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TO SHOW THEY ARE 20 PERCENT BETTER THAN HUMAN DRIVERS AT . . .
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28 million miles or 1.3 years

If this graphic were
drawn to scale,
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NOTE: Confidence interval = 95%. Times provided assume a fleet of 100 test AVs driving continuously at an average of 25 mph. Crash and injury rates used here include police-
reported incidents and estimates of unreported incidents.
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How to accelerate the testing process?
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" Plant / Physics Model

Need a simulator to test a system



Qunity Products  Solutions  Made with Unity Community  Learn O

2D Games 360video Analytics Auto & Transportation  Brand Advertising  Cinematic VR eee

Automotive and
Transportation

Accelerate innovation using Unity’s real-time rendering platform plus PiXYZ's best-in-
class CAD data solutions, to empower your teams. Bring great ideas and products to life.

Talk to a Unity expert AutoTech summit
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CAN YOU
SIMULATE
THE WORLD?

WE CAN.
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Output

Output = Simulate(lnput)
O

A

_Simulation.

Input

Simulation = Black-Box Testing



Output

Keep simulating

Input

Simulation = Black-Box Testing



Output

Keep simulating
until finding BAD examples

) Input
O

Simulation = Black-Box Testing



Output

Keep simulating
until finding BAD examples

PROS: Cheaper than Road Testing
Trivially-Parallelizable (Cloud)

CONS: Curse of Dimensionality

) Input
O

Simulation = Black-Box Testing



APEX: Autonomous Vehicle Plan Verification and Execution
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Randomized testing,| where the configurations are sampled
from hypercubes of parameters, 1sjnot a scalable solution:| sup-

pose we decide to sample only 10 points in the range of every
state variable. For our 7D model, and with 2 cars, this yields a
total of 10'* simulations. Say we wish to simulate 10 seconds.
Even if a simulation runs in real-time, this still requires 10x 104

seconds =|30 million years to complete.
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Randomized testing,| where the configurations are sampled
from hypercubes of parameters, 1sjnot a scalable solution:| sup-

pose we decide to sample only 10 points in the range of every
state variable. For our 7D model, and with 2 cars, this yields a
total of 10'* simulations. Say we wish to simulate 10 seconds.
Even if a simulation runs in real-time, this still requires 10x 104

seconds =|30 million years to complete.

Want to do: Accelerated Testing (e.g. concolic testing)
/ Verification / Synthesis

=> Need symbolic representation of a system



2. Modeling Language



C++ Library which you can:

- Model dynamical systems
- Simulate dynamical systems with a suite of numerical integration routines
- Construct and solve optimization problems

- Analysis dynamical systems

A PLANNING, CONTROL,
AND ANALYSIS TOOLBOX FOR
NONLINEAR DYNAMICAL SYSTEMS

(local stability/controllability/observability analysis)

- Planning, Controller design, ...



Dynamical Systems

(Continuous)

'jj — f(t,:l?,u,p)

y = g(t,z,u,p)




Diagram

Diagram = A Graph of Systems = A System

Photo Credit: Alejandro Castro @ TRI
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Templated System Framework

System<T> where T can be:

- double for Simulation / Testing




Templated System Framework

System<T> where T can be:

- double for Simulation / Testing

- AutoD1iff for Optimization-based Analysis & Design

Gradient

30



Templated System Framework

System<T> where T can be:

- double for Simulation / Testing

- AutoD1ff for Optimization-based Analysis & Design

f(x) =x°+42° — 5z +6

31



3. Real Problems



First-order encoding of Real problems
In control domain

* Planning / Reachability

step O step 1

%0, T1, ..., 5375, 20, ..., T 3o, t1, ..., Lk
Init(Zo) A flow,, (Zo, Th, to) A Jumpg,—q, (5, T1)A

flOle (fla fﬁa tl) A jumpql—ﬂ]z (fla fQ)A

flow,, (21, %, tr) A Unsafe(Z})



First-order encoding of problems
In control domain

* Planning / Reachability (3)
e Trajectory Optimization / Optimal Control

Target (x_T,y_T)

Find launch conditions that minimize launch energy
Cannon position while hitting the target



First-order encoding of problems
In control domain

* Planning / Reachability (3)
e Trajectory Optimization / Optimal Control

Target (x_T,y_T)

Find launch conditions that minimize launch energy
Cannon position while hitting the target

=> Constrained Optimization Problem min f(x) 5.t. ¢(x)

is Ioglcally

Ix.Vy. ¢(x) AN o(y) = f(x) < f(y)



First-order encoding of problems
In control domain

* Planning / Reachability (3)
e Trajectory Optimization / Optimal Control (3v)

* Lyapunov-function (stability) / Barrier certificate (safety)

Find a function, B : X = R, which satisfies the following
B = 0 conditions to show that it is not possible to have a trajectory
T T starting in X0 and reaching Unsafe:

Vxe X, = Bx) <0

VxeU = B(x)>0

. > 0B
Vx.Bx) =0 = _8 fx) <0
o 3 N




First-order encoding of problems
In control domain

* Planning / Reachability (3)
e Trajectory Optimization / Optimal Control (3v)

e Lyapunov-function / Barrier certificate (3v)



First-order encoding of problems
In control domain

Planning / Reachability (3)
Trajectory Optimization / Optimal Control (3v)
Lyapunov-function / Barrier certificate (3v)

Robust Optimal Control / Robust Optimization (3v3)

Minimize c(x)
s.t. g(x, u) for all u e U.

Encoding:
Ix. (vu € U. g(x, u)) A (vy. (vu € U. g(y, u)) = c(x) < c(y))
=> 3IX. (vu € U. g(x, u)) A (vy. (3u € U. =g(y, u)) v (c(x) <



4. How to Solve it?



Decision Problems over the Reals

Given an arbitrary first-order sentence over <R, > .7:>, such as

¢:Q[1l1’ul]x1°°°Ql i /\(\/fw >O\/\/f@ () 2 )

where f € JF, can we compute whether ¢ is true or false?

+ Complexity results of nhon=linear arithmetic over the Reals
- Decidable if Y only contains polynomials [Tarski5 1]
- Undecidable if ¢ includes trigonometric functions (i.e. sin)

- Real-world problems contain complex nonlinear
functions
(trigonometric functions, log, exp, ODEs)



Delta-decision Problem

Given a first-order formula over the Real, (¥, and a positive rational number 0,
delta-decision problem asks for one of the following answers:

UNSAT: ¢ is unsatisfiable
5=-SAT : © ° is satisfiable.

where 90_5 is called the 0-weakening of ¥ which is formally defined as follows:
QO_(S — gll’ul]wl...Q%n’un]ZEn. /\ (\/ fz,](f) > —0V \/fz,k(f) > 5)
i\ J j

It is shown that this problem is decidable for signatures with computable
functions [LICS12]

The complexity for existential problems is NP (with P-time computable
functions) or PSPACE (with Lipschitz ODEs) [LICSI2]



Design of Solver: Big Picture

¢

Logic Formula

0

Numerical
Error

SAT
Solver

Theory
Solver

O -SAT + Solution

or
UNSAT + Proof

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment

is feasible under the first order theory of Real



Design of Solver: Big Picture

List of Constraints

SAT Theory
Solver Solver

() -SAT (+Solution)
or
UNSAT (+Explanation)

Boolean Search Constraints Solving
Non-chronological Backtracking Validated Numerics
Learning Optimization

Simulation/Sampling

(Discrete Domain) (Continuous Domain)



Top-down/Bottom Approaches
in Theory Solver

Top-Down Approach

Maintain a set of possible solutions
Useful to show UNSAT
Validated Numerics
(i.e. Interval-based methods)

O O

by Local Optimization

Bottom-Up Approach

Sample points and test them

Useful to show SAT
Use local-optimization to improve

44



An Algorithm in Theory Solver:
|CP(Interval Constraint Propagation)

Fixedpoint
Computation

Pruning Branch

Safely reduce a search space Partition a search space
without removing solutions into two sub-spaces



Two Termination Conditions of ICP
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|ICP Algorithm

Algorithm 1: Theory Solving in DPLL(ICP)

o LN -

N

11
12
13
14

15
16

input : A conjunction of theory atoms, seen as constraints,
C1(Z1,y.eey Tn)yeeey Cm(T1, .ory Tn ), the initial interval bounds on all
variables B = I x --- x I, box stack S = (), and precision § € Q.
output: d-sat, or unsat with learned conflict clauses.

S.push(By);
while S # () do

‘while 31 <i<. m, B ;é Prune(B cz) do |

f //Pruning without branching, used as the assert() function.
_ | B + Prune(B,c;);

end

//The £ bélow.is'computed fromdiand the'LlpSChltZ constants'of
fctlons beforehand o -

| 1f # T A P AP AAEAPS

! | if 31<i<n,|L| >ethen

‘ {B,, B2} + Branch(B,1i); //Splitting on the intervals

S-puSh({Bla B2});
else

| return é-sat; //Complete check() is successful.
end

end
return unsat;

Pruning

Branching

47



5. How to Solve 3v



.

Delta-Decision Procedures for Exists-Forall
Problems over the Reals

2

Soonho Kong!, Armando Solar-Lezama?, and Sicun Gao?

! Toyota Research Institute
soonho.kong@tri.global
* Massachusetts Institute of Technology, USA
asolar@csail.mit.edu
> University of California, San Diego, USA
sicung@ucsd.edu

Abstract. We propose o-complete decision procedures for solving satis-
fiability of nonlinear SMT problems over real numbers that contain uni-
versal quantification and a wide range of nonlinear functions. The meth-
ods combine interval constraint propagation, counterexample-guided syn-
thesis, and numerical optimization. In particular, we show how to handle
the interleaving of numerical and symbolic computation to ensure delta-
completeness in quantified reasoning. We demonstrate that the proposed
algorithms can handle various challenging global optimization and con-
trol synthesis problems that are beyond the reach of existing solvers.



Problem

dx.Vy. p(x,y)

where ¢ can include an arbitrary Boolean combination of
numerically computable functions (e.g. sin, cos, exp)



Problem

dx.Vy. ¢(x,y)

We can encode the following problems:

- Optimization
- Non-linear / Non-convex

- Global
- Constrained

- Synthesis
- Program
- Controller (e.g. Lyapunov function, Barrier function)



Simple Case:
Unconstrained Global Optimization

min f(x)
'

dx.Vy.f(x) < f(y)m




Simple Case:
Unconstrained Global Optimization

dx.Vy. f(x) < f(y)

Remark:

Finding the exact global optimum is undecidable
when we allow functions such as sin, cos.
f(x)




Simple Case:
Unconstrained Global Optimization

Instead, we want to find a small interval | such that forall xin | :

Vy.flx) L fly)+0

Note that this problem is decidable (2,)

P——



ldea 1: Counterexample Refinement

Find a counterexample y such that for an xin ||

Jx) > f(y)

and use it to reduce IX1 to IX2.
Use it as a contractor for a forall constraint.




Finding a Counterexample

Jx) > f(y)

How do we find such y?
Note that the problem is in general undecidable again

e delta-dec solver to find a

301V6(f (X) > f (y) 0 )



Problem of spurious counterexamples

Consider a 6-SAT case where Solve(f(x) > f(y), 8') finds (X, y) such that:

f (X ) + 0" > f (y) v
Jx) > f(y) X

Spurious counterexamples give NO pruning power.



|dea 2: Double-sided Error Control

Instead of solving the following to counterexampl

Solve(f(x) > f(y), o)

Solve the following which strengthened the CE query by €:

Solve(f(x) > f(y) +€,0)

Q: How to pick &' and € given 07?



ldea 2: Double-sided Error Control
Solve(f(x) > f(y) + €,0)

UNSAT CASE:

Vy.flx) L f(y) +¢€

Note that we wanted to satisfy:

Vy.f(x) < f(y)+6

So we have:

€ <0




ldea 2: Double-sided Error Control
Solve(f(x) > f(y) + €,0)

5-SAT CASE: We have (x, y) such that:

fx)+ 6 > f(y)+¢€ i
fx) > fy) + (e = 0" N

We want this to be a true counterexample: "T""" ~ ""’i’" i"f(yf A Nty -----ﬂi —————
6—8>O

That is,

o' < € i Xy



|dea 2: Double-sided Error Control

Instead of solving the following to counterexampl

Solve(f(x) > f(y), o)

Solve the following which strengthened the CE query by €:

Solve(f(x) > f(y) +€,0)

Q: How to pick &' and € given 07?

0'<e<O



|dea 2: Double-sided Error Control

Algorithm 2 V-Clause Pruning

1: function PRUNE(B;, B,, Vy \/{;:O fi(x,y) > 0,46, ¢, 0)

2 repeat

3 BPYY « B,

4 Y < N\, fi(z,y) <0

5 )€ < Strengthen(1), )

6 b < Solve(y,1pT¢, ") >0 < ¢ < e < 4§ should hold.
7 if b = () then

8: return B, > No counterexample found, stop pruning.
9: end if
10: for i € {0,...,k} do

1 B; < B, N Prune(B,, fi(x,b) > 0)

| 2
3
14
O
6:

end for

Ly Llf:o b;

until B, # B>
return B,
end function




ldea 3: Local Optimization

Global Minimum'!_ 1
L e fest |
L X4 o X2 I
| Ly le o
X T X *
X2 >III X0
X1 -:|
X0
(a) Without local optimization. (b) With local optimization.

Fig. 1: llustrations of the pruning algorithm for CNF"-formula with and without
using local optimization.



Case Study: Nonlinear Global Optimization

A l»\

(a) Ackley Function. (b) EggHolder Function.

(c) Holder Table2 Function.

Rl
R

(e) Ripple 1 Function. (f) Testtube Holder Function.




Case Study: Nonlinear Global Optimization

Name Solution Time (sec)

Global [No L-Opt.| L-Opt. |No L-Opt.| L-Opt. [Speed Up
Ackley 2D 0.00000{  0.00000{ 0.00000 0.0579| 0.0047 12.32
Ackley 4D 0.00000f 0.00005| 0.00000 8.2256| 0.1930 42.62
Aluffi Pentini -0.35230| -0.35231| -0.35239 0.0321| 0.1868 0.17
Beale 0.00000{ 0.00003| 0.00000 0.0317| 0.0615 0.52
Bohachevskyl 0.00000{ 0.00006| 0.00000 0.0094| 0.0020 4.70
Booth 0.00000{ 0.00006| 0.00000 0.5035| 0.0020 251.75
Brent 0.00000{ 0.00006| 0.00000 0.0095| 0.0017 5.59
Bukin6 0.00000{ 0.00003| 0.00003 0.0093| 0.0083 1.12
Cross in Tray -2.06261| -2.06254| -2.06260 0.5669| 0.1623 3.49
Easom -1.00000| -1.00000( -1.00000 0.0061| 0.0030 2.03
EggHolder -959.64070(-959.64030(-959.64031 0.0446| 0.0211 2.11
Holder Table2 -19.20850| -19.20846| -19.20845| 52.9152|41.7004 1.27
Levi N13 0.00000f 0.00000| 0.00000 0.1383| 0.0034 40.68
Ripple 1 -2.20000| -2.20000( -2.20000 0.0059| 0.0065 0.91
Schaffer F6 0.00000f 0.00004| 0.00000 0.0531| 0.0056 9.48
Testtube Holder | -10.87230| -10.87227| -10.87230 0.0636| 0.0035 18.17
Trefethen -3.30687| -3.30681| -3.30685 3.0689| 1.4916 2.06
W Wavy 0.00000{ 0.00000{ 0.00000 0.1234| 0.0138 8.94
Zettl -0.00379 -0.00375| -0.00379 0.0070| 0.0069 1.01
Rosenbrock Cubic| 0.00000| 0.00005 0.00002 0.0045| 0.0036 1.25
Rosenbrock Disk 0.00000f 0.00002| 0.00000 0.0036| 0.0028 1.29
Mishra Bird -106.76454|-106.76449|-106.76451 1.8496| 0.9122 2.03
Townsend -2.02399| -2.02385| -2.02390 2.6216| 0.5817 4.51
Simionescu -0.07262| -0.07199| -0.07200 0.0064| 0.0048 1.33

Table 1: Experimental results for nonlinear global optimization problems: The
first 19 problems (Ackley 2D — Zettl) are unconstrained optimization problems
and the last five problems (Rosenbrock Cubic — Simionescu) are constrained
optimization problems. We ran our prototype solver over those instances with
and without local-optimization option (“L-Opt.” and “No L-Opt.” columns) and
compared the results. We chose 0 = 0.0001 for all instances.



Case Study: Synthesizing Lyapunov Function

Problem: Find a Lyapunov function for a dynamical system, v : X = R*, which satisfies the following condition:

Ve € X \0v(x)0) =
Vo € X Vo) - fi(a(t)) <

where the system is described by a system of ODEs:

x(t) = fi(z(t)), Va(t) € Xi.



Case Study: Synthesizing Lyapunov Function

Normalized Pendulum Given a standard pendulum system with normalized
parameters o ]
T T2

_jj2_ T SiIl(ZIZl) — 332_

and a quadratic template for a Lyapunov function v(x) = ! Px = ciz129

cox? + c3x4, we can encode this synthesis problem into the following 3V-formula:

Jeicacs Yo [((50cszixa + 50z5cr + 50x5¢0 > 0.5)A

(10061331332 -+ 50$263 —+ (—LEQ — Sin(xl)(50$163 —+ 100513202)) < —05))\/
=((0.01 < 22 +23) A (27 + 25 < 1))]

Our prototype solver takes 44.184 seconds to synthesize the following function
as a solution to the problem for the bound ||| € [0.1,1.0] and ¢; € [0.1,100]
using 0 = 0.05:

v = 40.6843x 125 + 35.6870x7 + 84.39065.



Case Study: Synthesizing Lyapunov Function

Damped Mathieu System Mathieu dynamics are time-varying and defined
by the following ODEs:

k2 _ X9
To —Tg — (2 + Sin(t))ml_ '

Using a quadratic template for a Lyapunov function v(x) = ! Px = ¢ z1 29

cow? + c3x4, we can encode this synthesis problem into the following 3V-formula:

dcicocs Vrpaot [(50x1x000 + 50x%cl + 5O$303 > 0)A
(100611’15[32 + 50x9co + (—CEQ — 331(2 - Sin(t)))(50$162 —+ :_0033263) 2 O)
V(001 <22 +23) A0I <AL A (2] + 25 <1))]

Our prototype solver takes 26.533 seconds to synthesize the following function
as a solution to the problem for the bound ||x| € [0.1,1.0], ¢ € [0.1,1.0], and
c; € [45,98] using 6 = 0.05:

V = 54.6950x1 22 + 90.2849x7 + 50.5376x3.



To conclude:
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To conclude:

. Road Testing is expensive & not scalable.

. Simulation is the next hope.

. But we still need advanced techniques such as

white-box fuzzing, verification & synthesis.

. Find a good modeling tool so that you can extract symbolic representations.
. Many interesting control problems can be encoded into first-order logic formulas.
. Delta-decision problems:

For verification, using delta-weakening allows us to fix “near-failure” systems.
For synthesis, a dual notion of delta-strengthening produces robust designs.

. We have an implementation (dReal) which can handle 3 and 3v formulas.

(3v3 support is work-in-progress).



