Efficient Delta-decision Procedure

[Thesis Proposal]

Carnegie Mellon University

Computer Science Department

Thesis Committee:

Edmund M. Clarke, Chair Randal E. Bryant Jeremy Avigad Leonardo de Moura, Microsoft Research Chapter I Introduction

Decision Problems over the Reals

Given an arbitrary first-order sentence over $\langle \mathbb{R}, \geq, \mathcal{F} \rangle$, such as

$$\varphi = Q_1^{[l_1, u_1]} x_1 \dots Q_n^{[l_n, u_n]} x_n. \ \bigwedge_i \left(\bigvee_j f_{i,j}(\vec{x}) > 0 \lor \bigvee_k f_{i,k}(\vec{x}) \ge 0 \right)$$

where $f \in \mathcal{F}$, can we compute whether φ is true or false?

- Complexity results of **non-linear** arithmetic over the **Reals**
 - **Decidable** if φ only contains polynomials [Tarski51]
 - Undecidable if φ includes trigonometric functions (i.e. sin)
- Real-world problems contain complex nonlinear functions (trigonometric functions, log, exp, ODEs)

Delta-decision Problem

- Given a first-order formula over the Real φ , and a positive rational number δ , delta-decision problem asks for one of the following answers:
 - UNSAT: φ is unsatisfiable
 - **\delta-SAT** : $\varphi^{-\delta}$ is satisfiable.

where $\varphi^{-\delta}$ is called the **\delta-weakening** of φ which is formally defined as follows:

$$\varphi^{-\delta} = Q_1^{[l_1, u_1]} x_1 \dots Q_n^{[l_n, u_n]} x_n. \quad \bigwedge_i \left(\bigvee_j f_{i,j}(\vec{x}) > -\delta \lor \bigvee_j f_{i,k}(\vec{x}) \ge -\delta \right)$$

- It is shown that this problem is decidable for signatures with computable functions [LICS12]
- The complexity for existential problems is NP (with P-time computable functions) or PSPACE (with Lipschitz ODEs) [LICS12]

Thesis Statement

⁶ This thesis aims to show the steps that are taken towards filling in this gap with convincing and practical examples showing the broad applicability of these procedures.

Thesis Statement

⁶ This thesis aims to show the steps that are taken towards filling in this gap with convincing and practical examples showing the broad applicability of these procedures.⁹⁹

Thesis Statement

⁶ This thesis aims to show the steps that are taken towards filling in this gap with convincing and practical examples showing the broad applicability of these procedures.⁹⁹

Research Questions:

- How to handle ODEs?
- How to integrate learning and non-chronological backtracking in solving?
- How to handle exist-forall problems and use the technique for optimization problems?

Chapter 2 Background

Design of Solver: Big Picture

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment is feasible under the first order theory of Real

Design of Solver: Big Picture

Boolean Search Non-chronological Backtracking Learning

• • •

(Discrete Domain)

Constraints Solving Validated Numerics Optimization Simulation/Sampling

(Continuous Domain)

Top-down/Bottom Approaches in Theory Solver

Top-Down Approach

Maintain a set of possible solutions Useful to show UNSAT Validated Numerics (i.e. Interval-based methods)

Bottom-Up Approach

Sample points and test them Useful to show SAT Use local-optimization to improve

An Algorithm in Theory Solver: ICP(Interval Constraint Propagation)

Safely reduce a search space without removing solutions

Partition a search space into two sub-spaces

Two Termination Conditions of ICP

ICP Algorithm

Algorithm 1: Theory Solving in $DPLL(ICP)$	
input : A conjunction of theory atoms, seen as constraints, $c_1(x_1,, x_n),, c_m(x_1,, x_n)$, the initial interval bounds on all	
variables $B^0 = I_1^0 \times \cdots \times I_n^0$, box stack $S = \emptyset$, and precision $\delta \in \mathbb{Q}^+$.	
output : δ -sat, or unsat with learned conflict clauses.	
1 $S.push(B_0);$	
2 while $S \neq \emptyset$ do	
$3 B \leftarrow S.\mathrm{pop}();$	7
4 while $\exists 1 \leq i \leq m, B \neq \operatorname{Prune}(B, c_i)$ do	
5 //Pruning without branching, used as the assert() function.	Pruning
$B \leftarrow \operatorname{Prune}(B, c_i);$	iiunng
6 end	
7 //The ε below is computed from δ and the Lipschitz constants of	
functions beforehand.	1
8 if $B \neq \emptyset$ then	
9 if $\exists 1 \leq i \leq n, I_i \geq \varepsilon$ then	
10 $\{B_1, B_2\} \leftarrow \text{Branch}(B, i); //\text{Splitting on the intervals}$	
$ S.push(\{B_1, B_2\});$	Branching
11 else	Drancing
12 return δ -sat; //Complete check() is successful.	
13 end	
14 end	
15 end	
16 return unsat;	

Chapter 3 Solving Delta-decision Problems with ODEs [Completed Work]

Solving Delta-decision Problems with ODEs Motivation

- ODEs are widely used in the design and verification of Hybrid Systems (i.e. in Biomedical, Robotics).
- Most of them include highly-nonlinear dynamics.

Solving Delta-decision Problems with ODEs Motivation

- ODEs are widely used in the design and verification of Hybrid Systems (i.e. in Biomedical, Robotics).
- Most of them include highly-nonlinear dynamics.

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,

"APEX: A Tool for Autonomous Vehicle Plan Verification and Execution", In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016

18

Solving Delta-decision Problems with ODEs Approach

- I. Design pruning operators from an ODE constraint.
- 2. Use rigorous numerical ODE solvers to propagate interval assignments on initial/final/time variables.

pruning on Xt

How can we prune X_t ?

(numerically) Compute the enclosures of the solutions of ODE

(numerically) Compute the enclosures of the solutions of ODE

Take the intersection between the Enclosure and Xt

Pruning on X₀

Pruning using ODEs (using Invariant)

Solving Delta-decision Problems with ODEs **Result**

- * Implemented in dReal
- * Can handle a formula with 250+ ODEs and 600+ Vars
- * Published a paper in FMCAD'13
- * There are **applications** and **tools** based on this technique

Solving Delta-decision Problems with ODEs **Result**

Applications:

- * Autonomous Driving (Penn) [SAE'16]
- * Planning (CMU,SIFT) [AAAI'15]
- * Atrial Fibrillation (Stony Brook, TU, CMU) [HSCC'15, CMSB'14]
- * Diabetes (Penn) [ADHS'15]
- * Prostate Cancer (Pitt, CMU) [HSCC'15]

Tools based on dReal:

- * APEX: A Tool for Autonomous Vehicle Plan Verification and Execution (Toyota/UPenn)
- * BioPSy: Parameter set synthesis on biological models (Univ. of Newcastle)
- * dReach: Reachability analysis tool for hybrid system (CMU)
- * ProbReach: Probabilistic reachability analysis of hybrid systems (Univ. of Newcastle)
- * SReach: Bounded model checker for stochastic hybrid systems (CMU)

Chapter 4 SAT-driven Branch-and-Prune [Work in Progress]

SAT-driven Branch-and-Prune Motivation

SAT Solving (DPLL/CDCL)

> Split Rule (i.e. Making a decision)

ICP

Branching

Search

Inference

Unit Resolution (Boolean Constraint Propagation)

Pruning

SAT-driven Branch-and-Prune Motivation

Inference

(Boolean Constraint Propagation)

Pruning

SAT-driven Branch-and-Prune Motivation

Pruning: $f_1(y) \land \{x : [1,3], y : [1,5]\} \rightarrow \{x : [1,3], y : [2,4]\}$

Learned Clause: $f_1(y) \land \{y : [1,5]\} \rightarrow \{y : [2,4]\}$ (after generalization)

ICP \rightarrow Clause Manager : Report pruning/branching steps Clause Manager \rightarrow ICP : Provide the **next box** to visit

```
SAT ICP(Constraint f, Box b) {
    CM.init(b); // set initial search space
    while (b = CM.next box()) {
                                                      b
         // Pruning
         do {
             b' = f.prune(b);
             CM.learn(f, b \rightarrow b');
         } while (b' \neq \emptyset \land b' \neq b);
         if (b' = \emptyset) {
              break; // try to get a new box
         }
         if (|b'| \le \epsilon) {
              return \delta-SAT(b');
                                                      b'
         }
         // Branching
         (b1, b2) = branch(b');
                                                        bl
         CM.learn(b' \rightarrow b1 \vee b2);
         b = b1; // search b1 first
    }
    return UNSAT; // no box to search
}
```

b'

b2

Boolean Encoding

I. To each predicate $(x \ge c)$ (resp. $x \le c$), associate a Boolean variable $b_{(x \ge c)}$ (resp. $b_{(x \le c)}$)

$$\{x: [1,3], y: [1,5]\} = (1 \le x) \land (x \le 3) \land (1 \le y) \land (y \le 5)$$

2. Introduce Extra Constraints

 $\begin{array}{ll} \mbox{Ordering Constraints:} & (x\leq 1) \rightarrow (x\leq 3) & (x\geq 3) \rightarrow (x\geq 1) \\ \mbox{Disjointness Constraints:} & (x\geq 3) \rightarrow \neg (x\leq 1) \end{array}$

Simplification of Clauses

I. Using resolution rule to infer new clauses

$$\begin{array}{ccc} b_1 \to b_2 & \neg b_2 \\ & \neg b_1 \end{array}$$

2. Using subsumption rule to eliminate redundant clauses

$$\{b_1 \to b_2, \neg b_2, \neg b_1\} \implies \{\neg b_1\}$$

Simplification of Clauses

3. Replacing two adjacent boxes with a single box by merging them

4. Relaxing/enlarging a box using its neighbors

An example:

B8 → B7

An example:

 $B8 \rightarrow B7$

An example:

B6

B3

B3

SAT-driven Branch-and-Prune Proposed Work

- Prove SAT+ICP algorithm terminates.
- Prove correctness of SAT+ICP algorithm.
 The outputs from naive ICP and SAT+ICP should be identical.
- Show that SAT+ICP algorithm **outperforms** naive ICP.
- Use Boxes/LDD^{*} data structure to implement Clause Manager and check the performance gain.

Chapter 5 Solving Exist-forall Formulas [Work in Progress]

Solving Exist-forall Formulas Motivation

Challenging Problems in Optimization

Solving Exist-forall Formulas Approach Openation

Encode optimization problems into first-order formula over Real with **one alternation of quantifiers**

$$\begin{split} \min f(\mathbf{x}) \text{ s.t. } \phi(\mathbf{x}) \\ \widehat{\mathbf{y}} \text{ is logically} \\ \exists \mathbf{x}. \forall \mathbf{y}. \ \phi(\mathbf{x}) \land \phi(\mathbf{y}) \rightarrow f(\mathbf{x}) \leq f(\mathbf{y}) \end{split}$$

and **solve** exist-forall problems.

Solving Exist-forall Formulas Approach

An example:

 $\exists^{[-5,5]} x. \forall^{[-4,4]} y. \ x^2 + y^2 <= 5^2$

(A) Initial Search Space: x = [-5, 5]

Solving Exist-forall Formulas Approach

Solving Exist-forall Formulas Approach

5

An example:

(B) Find a counterexample

x = -4.5

¦-4.5

-4 < x < 4

Solving Exist-forall Formulas Approach Openation

Counterexample-guided Pruning Algorithm for exist-forall Problem

 $\exists x. \forall y. \ \varphi(x,y)$

I. Counterexample generation:

 $b \leftarrow \text{Solve}(y, \neg \varphi(x, y))$

2. Pruning on x using the counterexample y = b:

 $B_x \leftarrow \operatorname{Prune}(B_x, \neg \varphi(x, b))$

Repeat until it fails to find a counterexample in step 1 or reaches a fixedpoint.

Solving Exist-forall Formulas Approach

Exploit the structure of optimization problem: $\exists x. \forall y. f(x) \leq f(y)$

- I. Counterexample generation: $b \leftarrow \text{Solve}(y, \neg \varphi(x, y))$
- 2. Use local-optimization to enhance the quality of a counterexample: $b \leftarrow \text{localOpt}(f, b)$
- 3. Pruning on x using the counterexample b = y:

 $B_x \leftarrow \operatorname{Prune}(B_x, \neg \varphi(x, b))$

Repeat until it fails to find a counterexample in step 1 or reaches a fixedpoint.

Solving Exist-forall Formulas Preliminary Results

W / Wavy Function (#165 in [40])

$$f_{165}(x_1, x_2) = 1 - \frac{1}{2} \sum_{i=1}^{2} \cos(10 * x_i) e^{\frac{-x_i^2}{2}}$$

subject to $-3 \leq x_1, x_2 \leq 3$.

Momin Jamil and Xin-She Yang, A literature survey of benchmark functions for global optimization problems, Int. Journal of Mathematical Modelling and Numerical Optimisation

Solving Exist-forall Formulas Preliminary Results

Salomon Function (#74 in [40])

 $f_{110}(x_1, x_2) = 1 - \cos\left(2\pi\sqrt{x_1^2 + x_2^2}\right) + 0.1\sqrt{x_1^2 + x_2^2}$

subject to $-100 \le x_1, x_2 \le 100$.

Momin Jamil and Xin-She Yang, A literature survey of benchmark functions for global optimization problems, Int. Journal of Mathematical Modelling and Numerical Optimisation Solving Exist-forall Formulas
Proposed Work

- Prove that the pruning algorithms terminate.
- Prove that the pruning algorithms are **well-defined**.
- Finish the implementation, run experiments.

Time Line & Summary of Proposed Work

Timeline & Summary of Proposed Work

SAT-driven Branch-and-Prune

- Prove SAT+ICP algorithm terminates.
- Prove correctness of SAT+ICP algorithm. The outputs from naive ICP and SAT+ICP should be identical.
- Show that SAT+ICP algorithm **outperforms** naive ICP.
- Use **Boxes/LDD** data structure to implement Clause Manager and check the performance gain.

Solving Exist-forall Formulas

- Prove that the pruning algorithms terminate.
- Prove that the pruning algorithms are well-defined.
- Finish the implementation, run experiments.

Plan to finish all before the beginning of Fall semester 2016.

Thank you