Efficient Delta-decision Procedure
[Thesis Proposal]

Soonho Kong

soonhok@cs.cmu.edu

Carnegie Mellon University
Computer Science Department

mailto:soonhok@cs.cmu.edu

Thesis Committee:

Edmund M. Clarke, Chair
Randal E. Bryant
Jeremy Avigad
Leonardo de Moura, Microsoft Research

Chapter |
Introduction

Decision Problems over the Reals

Given an arbitrary first-order sentence over (R,>,F),such as

o=@y oy .. Qlnly,,. /\(\/fu >ov\/f7,k)

where f € JF, can we compute whether ¢ is true or false?

+ Complexity results of non-linear arithmetic over the Reals
- Decidable if ¥ only contains polynomials [Tarski5 1]
+ Undecidable if ¥includes trigonometric functions (i.e. sin)

+ Real-world problems contain complex nonlinear functions
(trigonometric functions, log, exp, ODEs)

Delta-decision Problem

Given a first-order formula over the Real ¢, and a positive rational
number (), delta-decision problem asks for one of the following answers:

UNSAT: ¢ is unsatisfiable
8-SAT : ¢ ° is satisfiable.

where g0_5is called the &-weakening of ¥ which is formally defined as follows:
o0 = Q&zl,ul]xl..,Ql un] g /\ (\/ fij(Z) > =6V \/fzk) > 5)

It is shown that this problem is decidable for signatures with computable
functions [LICSI12]

The complexity for existential problems is NP (with P-time computable
functions) or PSPACE (with Lipschitz ODEs) [LICSI2]

Thesis Statement

Scalable & Practical

Delta-decision Procedures
(Algorithms & Implementations)

Theoretical Possibility | >
(Decidability & Complexity)

€€ This thesis aims to show the steps that are taken towards filling in this gap with

convincing and practical examples showing the broad applicability of these procedures.’)

Thesis Statement

Theoretical Possibility |

(Decidability & Complexity)

Scalable & Practical

> Delta-decision Procedures
(Algorithms & Implementations)

€€ This thesis aims to show the steps that are taken towards filling in this gap with

convincing and practical examples showing the broad applicability of these procedures.

Expressibility
(ODEs, IiDEs, ...)

Performance
(Learning, Parallelization, ...)

Supporting Quantifiers

(3,3v, 3v3,..))

9

Thesis Statement

Scalable & Practical

Delta-decision Procedures
(Algorithms & Implementations)

Theoretical Possibility | >
(Decidability & Complexity)

€€ This thesis aims to show the steps that are taken towards filling in this gap with

convincing and practical examples showing the broad applicability of these procedures.’)

Research Questions:
How to handle ODEs?

How to integrate learning and non-chronological backtracking in solving?
How to handle exist-forall problems and use the technique for optimization problems!?

Chapter 2
Background

Design of Solver: Big Picture

¢

Logic Formula

0

Numerical
Error

SAT
Solver

Theory
Solver

>

0-SAT + Solution
or
UNSAT + Proof

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assighment
is feasible under the first order theory of Real

Design of Solver: Big Picture

List of Constraints

SAT Theory
Solver Solver

)-SAT (+Solution)
or
UNSAT (+Explanation)

Boolean Search Constraints Solving
Non-chronological Backtracking Validated Numerics
Learning Optimization

Simulation/Sampling

(Discrete Domain) (Continuous Domain)

Top-down/Bottom Approaches
in Theory Solver

o O O
by Local Optimization

o O

O
O

o O
Top-Down Approach Bottom-Up Approach
Maintain a set of possible solutions Sample points and test them

Useful to show UNSAT Useful to show SAT
Validated Numerics Use local-optimization to improve

(i.e. Interval-based methods)

An Algorithm in Theory Solver:
|CP(Interval Constraint Propagation)

Fixedpoint
Computation

Pruning Branch

Safely reduce a search space Partition a search space
without removing solutions into two sub-spaces

Two Termination Conditions of ICP

Unsat

ICP Algorithm

Algorithm 1: Theory Solving in DPLL(ICP)

(% B SN VR S

i

11
12
13
14
15
16

input : A conjunction of theory atoms, seen as constraints,
C1(T1y.eeyTn)yees € (1, ouvy Tn), the initial interval bounds on all
variables B” = I x --- x I, box stack S = (), and precision § € Q.
output: d-sat, or unsat with learned conflict clauses.

S.push(Bg);
while S # () do

wh11e31‘<z<m "B # Prune(B, ;) do
f //Pruning without branching, used as the assert() function.

B + Prune(B, c;); Pruning

‘//The<é below‘1sucomputedufrom‘6‘and thelLlpschltz\constantsAof
functlons beforehand__}_v.

if 31 <i < n,|I;| > € then
{B:, B2} + Branch(B,1i); //Splitting on the intervals

S 1 Ba}); : .
Ise prsh({ 51, Bak) i Branching

return d-sat; //Complete check() is successful.

return unsat;

Chapter 3

Solving Delta-decision Problems with ODEs
[Completed Work]

Solving Delta-decision Problems with ODEs
Motivation

+ ODEs are widely used in the design and verification of Hybrid Systems
(i.e. in Biomedical, Robotics).

* Most of them include highly-nonlinear dynamics.

Cardiac Cell Action Potential Model
Mode 1 Mode 2 Mode 3 Mode 4

ow, :

du = u p i ! du 1, vu=0,)u,—u)
7 = _ _M L dt 1502 - Tsol dt Tﬁ
t T{)] dt T 2 T ol 1 + e 2](50() 1
dv 1-v ’ _ w-s
ar - uzeg ﬂ__i uZHW +—W'S MZHV TsoZ_Tsul ¥ T..
dt tvl dt - — > T Tsol + 1+e T) si
2 si
p l-—-w u<@, | dw w,—w u<@, | dv__v u<@, dv__ v
id T T 7 =T
—= — g - . T,-T, da T, da T,
dt = TWZ _Twl Twl + 2k =
TWI + 1 2k (u-u) 1 AP €_ w (=it) dw w dw w
+ o 2Kty A A
d | 1 ds (1 s) 1 dt T, dt T
s o |
= —— =2k (u—ug
a (1 + o2t S)r_ dt \1+e?k0 T, ds (1 s) 1 s 1 . 1
51 S - u-u - — A —u, - _
3 Ndr \lee™ 00) dt \l+e o ")

Bing Liu, Soonho Kong, Sicun Gao, Paolo Zuliani,and Edmund Clarke,
“Parameter Synthesis for Cardiac Cell Hybrid Models Using Delta-Decisions.”, CMSB 2014

Solving Delta-decision Problems with ODEs
Motivation

+ ODEs are widely used in the design and verification of Hybrid Systems

(i.e. in Biomedical, Robotics).

* Most of them include highly-nonlinear dynamics.

Vego ~Venv~ €

& Sxego - SXgpy < buffer

Follow Trajectory
3 Crlr—Cyly 7 C ¢ [Ci+Ci
j= (St} v (&) -6 (%2 6
y Crlr—Cily CR-CRY (4 i s
D= (Sg0h) o - (H2E) () + (%) 0
V=ax
Sx = veos (B +v)
Sy = vsin(3 +1)
8=y
Freny = b (Venv) +2¢ (Vapt) +3d (v 12)
Veny = Veny
Sxon = Venv (COS(Weny)) +Ex, éx € [-0.1,0.1]
Syeny = Veny (SIN(Weny)) + &y, &y € [-0.1,0.1]
Weny = Veny (b (Veny) +2¢ (V3 t) +3d (V3o t?))

~ Guard 1:

(Vego ~Venv 2&) A

(lsego'venvls Z)

Guard 2:

(Vego "Venv 2€) A

g (lsego'venv‘S ¢)

Guard 6: Guard 5:
(lookahead == 04) (tschedule == 0-1)
Reset: Reset:

Sxd = chl/\ Syd = sYc| tschedule =0

Compute Trajectory

fiet = b va + 2c: it + 3dt?

Ve = vaka

et cos(W o)

Sy el sin(Wey) ‘ o
W = vy (11' Vo + 2¢ z'f,f + il(/‘f,,fz)

Seu

Init

———— | e (c,r,—cm) 3 — (M) (V) * (%w

M~ | 5xn = Ve (COS(Veny)) + &x, 6x € [-0.1,0.1]

-
Follow Trajectory

3 Crlr—Cyly A C 5 [C+Cr
§= (Gt) e (&) -6 (%e) s

Iz
v =ay
Sx = Vvecos (8 +1))
Sy =vsin(3+v)
0= Vy
freny = b (Veny) +2¢ (Vanyt) +3d (VE t?)
Weny = Veny (renv)

Syen = Venv (SiN(Weny)) +&y, &y € [-0.1,0.1]
Weny = Veny (b(Venv) +2¢ (V3o t) +3d (V3o 1))

\
Guard 3: Guard 4:
(tschedule == 0-1) (tookahead == 0-4)
Reset: Reset:
tschedule =© Sxg = %% g™ g
N

Compute Trajectory

il = b vg + 2¢- vt + 3diyt?

Y = Vaka

Sz, = Ve cos(Vep)

Sy = v sin(Vy)

W = v (b va + 20 vt + 3d5t%)

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,

“APEX:A Tool for Autonomous Vehicle Plan Verification and Execution”, In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016

Solving Delta-decision Problems with ODEs

Approach
/

T
Xy = Xo —I—/O flow(x(s))ds

|. Design pruning operators from an ODE constraint.

2. Use rigorous numerical ODE solvers to propagate interval assighments on initial/final/time variables.

Pruning using ODEs
(Forward)

A T
Xy = Xo+ / flow(x(s))ds
0

pruning on Xt

How can we prune X!

Pruning using ODEs
(Forward)

A T | :
Xy :Xo+/ flow(z(s))ds
? 0
_
Xy
: : ; vl

(numerically) Compute the enclosures of the solutions of ODE

1 T
X: = Xo+ / flow(x(s))ds
0

/ \\
m X

Pruning using ODEs
(Forward)

t

Enclosures of Solutions of ODEs

T
N

(numerically) Compute the enclosures of the solutions of ODE

1 T
X: = Xo+ / flow(x(s))ds
0

Pruning using ODEs
(Forward)

/ \
. X,

Enclosures of Solutions of ODEs

Take the intersection between the Enclosure and Xt

23

Pruning using ODEs
(Backward)

Enclosures of Solutions of ODEs

Pruning on Xo

Pruning using ODEs
(on Time)

A T |
X: = Xy + / flow(z(s))ds
0 i

Enclosures of Solutions of ODEs

1 T, 1
Pruningon T

Pruning using ODEs
(using Invariant)

Pruning with Invariant

*

Solving Delta-decision Problems with ODEs

Result

Implemented in dReal
Can handle a formula with 250+ ODEs and 600+ Vars
Published a paper in FMCAD’13

There are applications and tools based on this technique

27

Solving Delta-decision Problems with ODEs

Result

Applications:

* Autonomous Driving (Penn) [SAE’| 6]

* Planning (CMU,SIFT) [AAAI']5]

*Atrial Fibrillation (Stony Brook, TU, CMU) [HSCC’|5,CMSB’ 4]
* Diabetes (Penn) [ADHS’15]

* Prostate Cancer (Pitt, CMU) [HSCC’|5]

Tools based on dReal:
* APEX:A Tool for Autonomous Vehicle Plan Verification and Execution (Toyota/UPenn)

* BioPSy: Parameter set synthesis on biological models (Univ. of Newcastle)

* dReach: Reachability analysis tool for hybrid system (CMU)

* ProbReach: Probabilistic reachability analysis of hybrid systems (Univ. of Newcastle)
* SReach: Bounded model checker for stochastic hybrid systems (CMU)

28

Chapter 4
SAT-driven Branch-and-Prune
[Work in Progress]

SAT-driven Branch-and-Prune
Motivation

SAT Solving ICP
(DPLL/CDCL)
Split Rule Branching

(i.e. Making a decision)

Search

Inference Unit Resolution Pruning

(Boolean Constraint Propagation)

SAT-driven Branch-and-Prune
Motivation

Search

Inference

SAT Solving
(DPLL/CDCL)

Split Rule

(i.e. Making a decision)

 Conflict Clause Learning + %
Non-chronological Backtracking §

Unit Resolution

(Boolean Constraint Propagation)

ICP

Branching

I Depth-first Search without Learning |
¢ Chronological Backtracking with Stack .

Pruning

31

SAT-driven Branch-and-Prune
Motivation

y y
5 5
0 |f) 00 | () |
4 - LT]
4 i .
B1 | B2 B1 | i
2 2 R I
Tf 1(y) T f1(y) T
1 3 5 1 3 5
Naive ICP without Learning X SAT-driven ICP with Learning

Pruning: fl(y) A {37 : [173]7y : [175]} — {37 : [173]7y : [274]}

Learned Clause: f1(y) A{y:[1,5]} — {y:(2,4]}
(after generalization)

SAT-driven Branch-and-Prune

Approach

Pruning >
f1 AN B1 — Bs
fa A By — ()

ICP Branching || Clause Manager
B — Bl V BQ

< Next Box?
B

ICP — Clause Manager : Report pruning/branching steps

Clause Manager — ICP : Provide the next box to visit

Approach

SAT ICP(Constraint f, Box b) {

CM.init(b); // set initial search space

while (b = CM.next box()) {
// Pruning
do {
b’ = f.prune(b);
CM.learn(f, b » b’");
} while (b’ # @ A b’ # b);
if (b’ = @) {

break; // try to get a new box

}
if (|b'| = €) {
return 0-SAT(b’);

}

// Branching

(bl, b2) = branch(b’);

CM.learn(b’ » bl VvV b2);

b = bl; // search bl first
}

return UNSAT; // no box to search

SAT-driven Branch-and-Prune

b’

b’

bl

b2

34

SAT-driven Branch-and-Prune

Approach

ICP

Pruning

P>
fl/\Bl—>BQ
faoABs— 0

Branching

B%Bl\/BQ

Next Box?
<

B

Clause Manager

Send
SAT Query
>

Learned Clauses
+

Extra Constraints

Interpret Result

SAT/UNSAT

SAT Solver

35

SAT-driven Branch-and-Prune

Approach

Send
SAT Query >

Learned Clauses
+

Extra Constraints

Clause Manager SAT Solver

Interpret Result

SAT/UNSAT

Boolean Encoding
|. To each predicate (x = c) (resp.x < c), associate a Boolean variable b= o (resp. bx <)
{z:[1,3Ly:[L5]} = (A<z)A(z<3)A[A <y A(y<5)

!

blgm A bajgg A blgy N by§5

2. Introduce Extra Constraints
Ordering Constraints: (<1) = (z<3) (x>3)— (x>1)

Disjointness Constraints: (2 > 3) — —=(z < 1)

SAT-driven Branch-and-Prune

Approach

Clause Manager

Simplification of Clauses

|. Using resolution rule to infer new clauses

bl — b2 _Ibg

—bq

2. Using subsumption rule to eliminate redundant clauses

{bl — bg, —Ibg, —lbl} — {—Ibl}

37

SAT-driven Branch-and-Prune

Approach

Clause Manager

Simplification of Clauses

3. Replacing two adjacent boxes with a single box by merging them

Bl B2 — B3

4. Relaxing/enlarging a box using its neighbors

Bl B2 |—» Bl B2

SAT-driven Branch-and-Prune

Approach

Clause Manager

An example:

B8

P

Bl

B7 B5
B4
B3

B2

B8 — B/

SAT-driven Branch-and-Prune

Approach

Clause Manager

An example:

B8

~~

Bl =1
B2 T
B7 B5 —»| B4 | B5

B4
B3 B3

B2

B8 — B/

SAT-driven Branch-and-Prune

Approach

Clause Manager

An example:

B8

~~

BI TBI o
B2 B2
B7 B5| |—»|B4|B5| ~ |—|B4|B5|B2

B4 s B3 B3

B8 — B/

An example:

B8

SAT-driven Branch-and-Prune

e

B7

B8 — B/

Approach

Clause Manager

Bl

B5

B2

B4

B3

B4

B5

B2

B3

B4

B5

B2

B2

An example:

B8

SAT-driven Branch-and-Prune

Approach

e

B7

B8 — B/

Clause Manager

Bl

B5

B2

B4

B3

B4

B5

B2

B3

B4

B5

B2

SAT-driven Branch-and-Prune

Approach

Clause Manager

An example:

B8

e

B7

B8 — B/

SAT-driven Branch-and-Prune

Approach

Clause Manager

An example:

B8

e

BI T Bl
B2 B2
B7 B5| |—»|B4|B5| |—

B4
B3 B3

B8 — B/

.

SAT-driven Branch-and-Prune

Proposed VVork

Prove SAT+ICP algorithm terminates.

Prove correctness of SAT+ICP algorithm.
The outputs from naive |ICP and SAT+ICP should be identical.

» Show that SAT+ICP algorithm outperforms naive ICP.

* .
Use Boxes/LDD data structure to implement Clause
Manager and check the performance gain.

* Arie Gurfinkel, Sagar Chaki,“Boxes: A Symbolic Abstract Domain of Boxes”. SAS 2010: 287-303

Chapter 5
Solving Exist-forall Formulas
[Work in Progress]

Solving Exist-forall Formulas

Motivation

Global

Non-convex

Non-linear

Multi-objective
Combinatorial (disjunctions)

Optimization

Challenging Problems in Optimization

Solving Exist-forall Formulas

Approach

Encode optimization problems into
first-order formula over Real
with one alternation of quantifiers

min f(x) s.t. ¢(x)
is Ioglcally

Hx.Vy o (x) A d(y) = f(x) < f(y)

and solve exist-forall problems.

Solving Exist-forall Formulas

Approach

An example:
=55 wim4 4y 22 4 ¢? <= 52
YA

5

ok
|/

(A) Initial Search Space: x = [-5, 5]

Solving Exist-forall Formulas

Approach

An example:
=55 wim4 4y 22 4 ¢? <= 52

<V

(A) Initial Search Space: x = [-5, 5] (B) Find a counterexample

xr=—4.5
y=3

Solving Exist-forall Formulas

Approach

An example:
=55 wim4 4y 22 4 ¢? <= 52

5 X X 4 i[5 x
’ <
N /|
(A) Initial Search Space: x = [-5, 5] (B) Find a counterexample (C) Prune x using the counterexample

r=—4.5

52

Solving Exist-forall Formulas

Approach

Counterexample-guided Pruning Algorithm for exist-forall Problem

Jx.Vy. o(z,y)

|. Counterexample generation:

b < Solve(y, p(x,y))

2. Pruning on x using the counterexample y = b:

B, < Prune(B,, ~¢(x,b))

Repeat until it fails to find a counterexample in step | or reaches a fixedpoint.

53

Solving Exist-forall Formulas

Approach

/)

NV

Solving Exist-forall Formulas

Approach

Solving Exist-forall Formulas

Approach

Solving Exist-forall Formulas

Approach

Exploit the structure of optimization problem:
Jz.Vy.f(z) < f(y)

|. Counterexample generation:
b < Solve(y, ~p(z,y))

2. Use local-optimization to enhance the quality of a counterexample:
b < localOpt(f,b)

3. Pruning on x using the counterexample b =y:
B, < Prune(B,, —~p(z,b))

Repeat until it fails to find a counterexample in step | or reaches a fixedpoint.

57

Solving Exist-forall Formulas

Preliminary Results

W / Wavy Function (#165 in [40])

2 2

1 -y

fies(T1,22) =1 — B 2608(10 xxri)e 2
1=

subject to —3 < 1,29 < 3.

20

|21 Local Minima

0.5

— [0.0
- (#0.0000,-0.0000) = 0.0000]

-3)

-1
° ! 2 3 -3 -2 B

x1 2

Momin Jamil and Xin-She Yang, A literature survey of benchmark functions for global optimization problems,
Int. Journal of Mathematical Modelling and Numerical Optimisation

58

Solving Exist-forall Formulas

Preliminary Results

Salomon Function (#74 in [40])

fiio(x1,22) =1 — cos (27r\/x% +x%> + 0.1/ 22 + 23

subject to —100 < x1, 2 < 100.

x2
x1 100 -100
50 0 50

-50
-100

—

[f[D.ODDD, 0.0000) = 0.0000]

100

16

12

10

Momin Jamil and Xin-She Yang, A literature survey of benchmark functions for global optimization problems,

Int. Journal of Mathematical Modelling and Numerical Optimisation

59

Solving Exist-forall Formulas

Proposed VVork

* Prove that the pruning algorithms terminate.

* Prove that the pruning algorithms are well-defined.

* Finish the implementation, run experiments.

Time Line &
Summary of Proposed Work

Timeline &
Summary of Proposed Work

SAT-driven Branch-and-Prune

* Prove SAT+ICP algorithm terminates.

* Prove correctness of SAT+ICP algorithm.
The outputs from naive ICP and SAT+ICP should be
identical.

* Show that SAT+ICP algorithm outperforms naive ICP.

* Use Boxes/LDD data structure to implement Clause
Manager and check the performance gain.

Solving Exist-forall Formulas

* Prove that the pruning algorithms terminate.
* Prove that the pruning algorithms are well-defined.

* Finish the implementation, run experiments.

Plan to finish all before the beginning of Fall semester 201 6.

62

Thank you

