
Efficient Delta-decision Procedure
[Thesis Proposal]

Soonho Kong 
soonhok@cs.cmu.edu

Carnegie Mellon University
Computer Science Department

mailto:soonhok@cs.cmu.edu

2

Thesis Committee:

Edmund M. Clarke, Chair
Randal E. Bryant
Jeremy Avigad

Leonardo de Moura, Microsoft Research

3

Chapter 1
Introduction

Decision Problems over the Reals

4

Given an arbitrary first-order sentence over , such ashR,�,Fi

' = Q

[l1,u1]
1 x1 . . . Q

[ln,un]
n xn.

^

i

0

@
_

j

fi,j(~x) > 0 _
_

k

fi,k(~x) � 0

1

A

where , can we compute whether is true or false? f 2 F '

• Complexity results of non-linear arithmetic over the Reals
• Decidable if only contains polynomials [Tarski51]
• Undecidable if includes trigonometric functions (i.e. sin)

• Real-world problems contain complex nonlinear functions  
(trigonometric functions, log, exp, ODEs)

'
'

Delta-decision Problem
• Given a first-order formula over the Real , and a positive rational

number , delta-decision problem asks for one of the following answers:

• UNSAT: is unsatisfiable

• δ-SAT : is satisfiable.

5

'

�
'

'��

where is called the δ-weakening of which is formally defined as follows: ''��

• It is shown that this problem is decidable for signatures with computable
functions [LICS12]

• The complexity for existential problems is NP (with P-time computable
functions) or PSPACE (with Lipschitz ODEs) [LICS12]

'

�� = Q

[l1,u1]
1 x1...Q

[ln,un]
n xn.

^

i

0

@
_

j

fi,j(~x) > �� _
_

j

fi,k(~x) � ��

1

A

Thesis Statement

6

Theoretical Possibility
(Decidability & Complexity)

Scalable & Practical  
Delta-decision Procedures
(Algorithms & Implementations)

This thesis aims to show the steps that are taken towards filling in this gap with
convincing and practical examples showing the broad applicability of these procedures.“ ”

Thesis Statement

7

Theoretical Possibility
(Decidability & Complexity)

Scalable & Practical  
Delta-decision Procedures
(Algorithms & Implementations)

This thesis aims to show the steps that are taken towards filling in this gap with
convincing and practical examples showing the broad applicability of these procedures.“ ”

Expressibility  
(ODEs, PDEs, …)

Performance  
(Learning, Parallelization, …)

Supporting Quantifiers
(∃, ∃∀, ∃∀∃, …)

Thesis Statement

8

Theoretical Possibility
(Decidability & Complexity)

Scalable & Practical  
Delta-decision Procedures
(Algorithms & Implementations)

This thesis aims to show the steps that are taken towards filling in this gap with
convincing and practical examples showing the broad applicability of these procedures.

Research Questions:
- How to handle ODEs?
- How to integrate learning and non-chronological backtracking in solving?
- How to handle exist-forall problems and use the technique for optimization problems?

“ ”

9

Chapter 2
Background

Design of Solver: Big Picture

10

SAT
Solver

Theory 
Solver

 -SAT + Solution  
or 

UNSAT + Proof

�

�

Logic Formula

Numerical
Error

��

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment  

is feasible under the first order theory of Real

Design of Solver: Big Picture

11

SAT
Solver

Theory 
Solver

List of Constraints

 -SAT (+Solution)  
or

UNSAT (+Explanation)

Boolean Search
Non-chronological Backtracking

Learning 
…
 

(Discrete Domain)

Constraints Solving
Validated Numerics

Optimization
Simulation/Sampling

… 
(Continuous Domain)

�

Top-down/Bottom Approaches  
in Theory Solver

12

by Local Optimization

Top-Down Approach

Maintain a set of possible solutions
Useful to show UNSAT

Validated Numerics  
(i.e. Interval-based methods)

Bottom-Up Approach

Sample points and test them
Useful to show SAT 

Use local-optimization to improve

Pruning Branch

Fixedpoint
Computation

Safely reduce a search space  
without removing solutions

Partition a search space  
into two sub-spaces

An Algorithm in Theory Solver:  
ICP(Interval Constraint Propagation)

13

δ-sat Unsat

ε

Two Termination Conditions of ICP

14

15

Pruning

Branching

ICP Algorithm

16

Chapter 3
Solving Delta-decision Problems with ODEs

[Completed Work]

Solving Delta-decision Problems with ODEs

Motivation
• ODEs are widely used in the design and verification of Hybrid Systems

(i.e. in Biomedical, Robotics).

• Most of them include highly-nonlinear dynamics.

17

flow
1
:

du

dt
= ! !

u

"
o1

dv

dt
=
1! v

"
v1

!

dw

dt
=

1!
u

"
w

"
!w

"
w1

!
+

"
w2

!
!"

w1

!

1+ e
!2kw

!
(u!uw

!
)

flow
2
:

du

dt
= ! !

u

"
o2

dv

dt
= !

v

"
v2

!

dw

dt
=

w"

*
!w

"
w1

!
+

"
w2

!
!"

w1

!

1+ e
!2kw

!
(u!uw

!
)

flow
3
:

du

dt
= ! !

1

"
so1
+

"
so2
!"

so1

1+ e
!2kso (u!uso)

+
w

2 " (1+ e
!2ks (u!us)) ""

si

dv

dt
= !

v

"
v2

!

dw

dt
= !

w

"
w

+

flow
4
:

du

dt
= ! +

v(u!"v)(uu !u)

fi

!
1

so1 +
so2 !# so1
1+ e

!2kso (u!uso)

+
w

2 " (1+ e
!2ks (u!us)) "# si

dv

dt
= !

v

v2
!

dw

dt
= !

w

w
+

u !!
o

u <!
o

Mode 1

u !!
w

u <!
w

u !!
v

u <!
v

Mode 2 Mode 3 Mode 4

(b)

flow
1
:

du

dt
= ! !

u

"
o1

dv

dt
=
1! v

"
v1

!

dw

dt
=

1!
u

"
w

"
!w

"
w1

!
+

"
w2

! !"
w1

!

1+ e
!2kw

!
(u!uw

!
)

ds

dt
=

1

1+ e
!2ks (u!us)

! s
#

$
%

&

'
(
1

"
s1

flow
2
:

du

dt
= ! !

u

"
o2

dv

dt
= !

v

"
v2

!

dw

dt
=

w"
* !w

"
w1

!
+

"
w2

! !"
w1

!

1+ e
!2kw

!
(u!uw

!
)

ds

dt
=

1

1+ e
!2ks (u!us)

! s
#

$
%

&

'
(
1

"
s1

flow
3
:

du

dt
= ! !

1

"
so1
+

"
so2
!"

so1

1+ e
!2kso (u!uso)

+
w " s

"
si

dv

dt
= !

v

"
v2

!

dw

dt
= !

w

"
w

+

ds

dt
=

1

1+ e
!2ks (u!us)

! s
#

$
%

&

'
(
1

"
s1

flow
4
:

du

dt
= ! +

v(u!"v)(uu !u)

fi

!
1

so1 +
so2 !# so1
1+ e

!2kso (u!uso)

+
w " s

si

dv

dt
= !

v

v2
!

dw

dt
= !

w

w
+

ds

dt
=

1

1+ e
!2ks (u!us)

! s
#

$
%

&

'
(
1

s1

u !!
o

u <!
o

Mode 1

u !!
w

u <!
w

u !!
v

u <!
v

Mode 2 Mode 3 Mode 4

(a)

Cardiac Cell Action Potential Model

Bing Liu, Soonho Kong, Sicun Gao, Paolo Zuliani, and Edmund Clarke,  
“Parameter Synthesis for Cardiac Cell Hybrid Models Using Delta-Decisions.”, CMSB 2014

Solving Delta-decision Problems with ODEs

Motivation

18

b

• ODEs are widely used in the design and verification of Hybrid Systems
(i.e. in Biomedical, Robotics).

• Most of them include highly-nonlinear dynamics.

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,  
“APEX: A Tool for Autonomous Vehicle Plan Verification and Execution”, In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016

Solving Delta-decision Problems with ODEs

Approach

19

Xt = X0 +

Z T

0
flow(x(s))ds

Xt

X0

T

Xt

X0

TPrune

1. Design pruning operators from an ODE constraint.  

2. Use rigorous numerical ODE solvers to propagate interval assignments on initial/final/time variables.

20

pruning on Xt
t

Xt
X0

T

How can we prune ?

Xt = X0 +

Z T

0
flow(x(s))ds

Xt

Pruning using ODEs 
(Forward)

21

t

Xt
X0

T�t �t �t

Xt = X0 +

Z T

0
flow(x(s))ds

(numerically) Compute the enclosures of the solutions of ODE

Pruning using ODEs
(Forward)

22

t

Xt
X0

T

Xt = X0 +

Z T

0
flow(x(s))ds

Enclosures of Solutions of ODEs

(numerically) Compute the enclosures of the solutions of ODE

Pruning using ODEs
(Forward)

23

t

Xt
X 0

tX0

T

Xt = X0 +

Z T

0
flow(x(s))ds

Enclosures of Solutions of ODEs

Take the intersection between the Enclosure and Xt

Pruning using ODEs
(Forward)

24

t

T

Xt

X0

X 0
0

Pruning on X0

Enclosures of Solutions of ODEs

Pruning using ODEs
(Backward)

25

t

Xt

X0

T

T 0

Pruning on T

Enclosures of Solutions of ODEs

Xt = X0 +

Z T

0
flow(x(s))ds

TuTl T 0
u

Pruning using ODEs
(on Time)

26

Invariant

t

Xt

X 0
t

T

X0

Pruning with Invariant

Pruning using ODEs
(using Invariant)

Solving Delta-decision Problems with ODEs

Result

27

* Implemented in dReal
* Can handle a formula with 250+ ODEs and 600+ Vars

* Published a paper in FMCAD’13

* There are applications and tools based on this technique

Solving Delta-decision Problems with ODEs

Result

28

Applications:
* Autonomous Driving (Penn) [SAE’16]
* Planning (CMU,SIFT) [AAAI’15]
* Atrial Fibrillation (Stony Brook, TU, CMU) [HSCC’15,CMSB’14]
* Diabetes (Penn) [ADHS’15]
* Prostate Cancer (Pitt, CMU) [HSCC’15]

Tools based on dReal:
* APEX: A Tool for Autonomous Vehicle Plan Verification and Execution (Toyota/UPenn)
* BioPSy: Parameter set synthesis on biological models (Univ. of Newcastle)
* dReach: Reachability analysis tool for hybrid system (CMU)
* ProbReach: Probabilistic reachability analysis of hybrid systems (Univ. of Newcastle)
* SReach: Bounded model checker for stochastic hybrid systems (CMU)

29

Chapter 4
SAT-driven Branch-and-Prune

[Work in Progress]

SAT-driven Branch-and-Prune

Motivation

30

SAT Solving 
(DPLL/CDCL) ICP

Search
Split Rule  

(i.e. Making a decision)  
 

Conflict Clause Learning +  
Non-chronological Backtracking

Branching 
 
 

Depth-first Search without Learning 
Chronological Backtracking with Stack

Inference Unit Resolution  
(Boolean Constraint Propagation)

Pruning

SAT-driven Branch-and-Prune

Motivation

31

SAT Solving 
(DPLL/CDCL) ICP

Search
Split Rule  

(i.e. Making a decision)  
 

Conflict Clause Learning +  
Non-chronological Backtracking

Branching 
 
 

Depth-first Search without Learning 
Chronological Backtracking with Stack

Inference Unit Resolution  
(Boolean Constraint Propagation)

Pruning

SAT-driven Branch-and-Prune

Motivation

32

f1(y) ^ {x : [1, 3], y : [1, 5]} ! {x : [1, 3], y : [2, 4]}

Chapter 4

SAT-driven Branch-and-Prune

The basic branch-and-prune algorithm shown in Algorithm 1 maintains a stack of boxes. After
branching, the subsequent pruning only a↵ects the current branch. However, these pruning steps
can generalize to other parts of the search space but the basic algorithm requires repeating these
pruning steps. Intuitively, our algorithm tries to generalize the pruning step to whole search
space. In this process, we replace the box representation by a propositional encoding of interval
constraints and use a SAT solver to drive the exploration of the search space. Figure 4.1 illustrates
the idea with a example.

B2B1 B2B1

B0 B0

x

y

x

y

Naive ICP without Learning SAT-driven ICP with Learning

1 3 51

2

4

5

1 3 51

2

4

5

Figure 4.1: Consider a scenario where we are applying the current box B0 = {x : [1, 3], y : [1, 5]}
to a pruning operation based on f(y). This gives us a smaller box B1 = {x : [1, 3], y : [2, 4]}.
Note that this pruning operation does not involve variable x so that the pruning result can be
generalized into K = (1 y 5) ^ f(y) =) (2 y 4) by dropping out constraints on x in
B0 and B1. This generalized learned-clause will be reused when we visit related boxes (such as
B2) and help us avoid applying the same constraint f(y) again.

14

f1(y)

f1(y)

f1(y)

f1(y)

Pruning:

Learned Clause:  
(after generalization)

f1(y) ^ {y : [1, 5]} ! {y : [2, 4]}

SAT-driven Branch-and-Prune

Approach

33

ICP Clause Manager

Pruning
f1 ^B1 ! B2

f2 ^B3 ! ;

Branching
B ! B1 _B2

Next Box?

B

ICP → Clause Manager : Report pruning/branching steps

Clause Manager → ICP : Provide the next box to visit

SAT-driven Branch-and-Prune

Approach

34

SAT_ICP(Constraint f, Box b) {
 CM.init(b); // set initial search space
 while (b = CM.next_box()) {
 // Pruning
 do {
 b’ = f.prune(b);
 CM.learn(f, b ! b’);
 } while (b’ ≠ ∅ ∧ b’ ≠ b);
 if (b’ = ∅) {
 break; // try to get a new box
 }
 if (|b’| ≤ ε) {
 return δ-SAT(b’);
 }
 // Branching
 (b1, b2) = branch(b’);
 CM.learn(b’ ! b1 ∨ b2);
 b = b1; // search b1 first
 }
 return UNSAT; // no box to search
}

b’

b

b’

b1 b2

SAT-driven Branch-and-Prune

Approach

35

Clause Manager SAT SolverICP

Pruning
f1 ^B1 ! B2

f2 ^B3 ! ;

Branching
B ! B1 _B2

Next Box?

B

Send  
SAT Query

Interpret Result

SAT/UNSAT

Learned Clauses 
+ 

Extra Constraints

SAT-driven Branch-and-Prune

Approach

36

Clause Manager SAT Solver

Send  
SAT Query

Interpret Result

SAT/UNSAT

Learned Clauses 
+ 

Extra Constraints

{x : [1, 3], y : [1, 5]} (1 x) ^ (x 3) ^ (1 y) ^ (y 5)

b1x

^ b
x3 ^ b1y

^ b
y5

(x 1) ! (x 3) (x � 3) ! (x � 1)

(x � 3) ! ¬(x 1)

Boolean Encoding
1. To each predicate (x ≥ c) (resp. x ≤ c), associate a Boolean variable b(x ≥ c) (resp. b(x ≤ c))  
 
 
 

2. Introduce Extra Constraints

=

Ordering Constraints:

Disjointness Constraints:

SAT-driven Branch-and-Prune

Approach

37

Clause Manager

Simplification of Clauses 
1. Using resolution rule to infer new clauses 
 
 
 
 

2. Using subsumption rule to eliminate redundant clauses 
 
 
 

¬b1

b1 ! b2 ¬b2

{b1 ! b2,¬b2,¬b1} =) {¬b1}

SAT-driven Branch-and-Prune

Approach

38

Clause Manager

Simplification of Clauses 
3. Replacing two adjacent boxes with a single box by merging them  
 
 
 
 

4. Relaxing/enlarging a box using its neighbors 
 
 
 

B1 B2 B3

B1 B2 B2B1 .

SAT-driven Branch-and-Prune

Approach

39

Clause Manager

B1
B2

B5
B4

B3

An example:

B7

B8

B8 → B7

SAT-driven Branch-and-Prune

Approach

40

Clause Manager

B1
B2

B5
B4

B3

B1
B2

B5B4

B3

An example:

B7

B8

B8 → B7

SAT-driven Branch-and-Prune

Approach

41

Clause Manager

B1
B2

B5
B4

B3

B1
B2

B5B4

B3

B1

B2B5B4

B3

An example:

B7

B8

B8 → B7

SAT-driven Branch-and-Prune

Approach

42

Clause Manager

B1
B2

B5
B4

B3

B1
B2

B5B4

B3

B1

B2B5B4

B3

B1

B2
B5

B4

B3

An example:

B7

B8

B8 → B7

SAT-driven Branch-and-Prune

Approach

43

Clause Manager

B1
B2

B5
B4

B3

B1
B2

B5B4

B3

B1

B2B5B4

B3

B1

B2
B5

B4

B3

B1

B2B5B4

B3

An example:

B7

B8

B8 → B7

SAT-driven Branch-and-Prune

Approach

44

Clause Manager

B1
B2

B5
B4

B3

B1
B2

B5B4

B3

B1

B2B5B4

B3

B1

B2
B5

B4

B3

B1

B2B5B4

B3

B2B6

B3

An example:

B7

B8

B8 → B7

SAT-driven Branch-and-Prune

Approach

45

Clause Manager

B1
B2

B5
B4

B3

B1
B2

B5B4

B3

B1

B2B5B4

B3

B1

B2
B5

B4

B3

B1

B2B5B4

B3

B2B6

B3

B7

An example:

B7

B8

B8 → B7

SAT-driven Branch-and-Prune

Proposed Work

• Prove SAT+ICP algorithm terminates.

• Prove correctness of SAT+ICP algorithm.  
 The outputs from naive ICP and SAT+ICP should be identical.

• Show that SAT+ICP algorithm outperforms naive ICP.

• Use Boxes/LDD data structure to implement Clause
Manager and check the performance gain.

46Arie Gurfinkel, Sagar Chaki, “Boxes: A Symbolic Abstract Domain of Boxes”. SAS 2010: 287-303

*

*

47

Chapter 5
Solving Exist-forall Formulas

[Work in Progress]

Solving Exist-forall Formulas

Motivation

48

Global
Non-convex 
Non-linear
Multi-objective
Combinatorial (disjunctions)
{ }Optimization

Challenging Problems in Optimization

Solving Exist-forall Formulas

Approach

49

Encode optimization problems into  
first-order formula over Real  

with one alternation of quantifiers

min f(x) s.t. �(x)

9x.8y. �(x) ^ �(y) ! f(x) f(y)

is logically

and solve exist-forall problems.

Solving Exist-forall Formulas

Approach

50

5

5 x

y

5

5 x

y

5

5 x

y

9[�5,5]
x.8[�4,4]

y. x

2 + y

2
<= 52

(A) Initial Search Space: x = [-5, 5] (B) Find a counterexample (C) Prune x using the counterexample

-4.5

3 3

-4 4

An example:

Solving Exist-forall Formulas

Approach

51

5

5 x

y

5

5 x

y

5

5 x

y

9[�5,5]
x.8[�4,4]

y. x

2 + y

2
<= 52

(A) Initial Search Space: x = [-5, 5] (B) Find a counterexample (C) Prune x using the counterexample

-4.5

3 3

-4 4

An example:

x = �4.5

y = 3

Solving Exist-forall Formulas

Approach

52

5

5 x

y

5

5 x

y

5

5 x

y

9[�5,5]
x.8[�4,4]

y. x

2 + y

2
<= 52

(A) Initial Search Space: x = [-5, 5] (B) Find a counterexample (C) Prune x using the counterexample

-4.5

3 3

-4 4

An example:

x = �4.5

y = 3

x

2 + 32 52

x

2 52 � 32 = 16 = 42

�4 x 4

Solving Exist-forall Formulas

Approach

53

Counterexample-guided Pruning Algorithm for exist-forall Problem  

1. Counterexample generation:  

2. Pruning on x using the counterexample y = b:  

9x.8y. '(x, y)

b Solve(y,¬'(x, y))

B

x

 Prune(B
x

,¬'(x, b))

Repeat until it fails to find a counterexample in step 1 or reaches a fixedpoint.

Solving Exist-forall Formulas

Approach

54

I
x

Solving Exist-forall Formulas

Approach

55

I
x

I 0
x

Counterexample

Solving Exist-forall Formulas

Approach

56

I
x

I 0
x

I 00
x

Local-Optimization

Counterexample

Solving Exist-forall Formulas

Approach

57

Exploit the structure of optimization problem:  

1. Counterexample generation:  

2. Use local-optimization to enhance the quality of a counterexample:  

3. Pruning on x using the counterexample b = y:  

b Solve(y,¬'(x, y))

B

x

 Prune(B
x

,¬'(x, b))

Repeat until it fails to find a counterexample in step 1 or reaches a fixedpoint.

9x.8y.f(x) f(y)

b localOpt(f, b)

Solving Exist-forall Formulas

Preliminary Results

58

Our algorithm found the global minimum located at (x1, x2) = (0, 0), f110(x1, x2) = 0.0 in 0.031
sec.

W / Wavy Function (#165 in [40])

f165(x1, x2) = 1 � 1

2

2X

i=1

cos(10 ⇤ x

i

)e
�x

2
i

2

subject to �3 x1, x2 3.

22Momin Jamil and Xin-She Yang, A literature survey of benchmark functions for global optimization problems,  
Int. Journal of Mathematical Modelling and Numerical Optimisation

121 Local Minima

Solving Exist-forall Formulas

Preliminary Results

59

5

5 x

y

5

5 x

y

5

5 x

y

9[�5,5]
x.8[�4,4]

y. x

2 + y

2
<= 52

(A) Initial Search Space: x = [-5, 5] (B) Find a counterexample and
improve it using local optimization

(C) Prune x using the counterexample

-4.5

3

4

-3 3

44
local optimization

Figure 5.2: This example starts with the same problem 9[�5,5]
x.8[�4,4]

y. x

2 + y

2
<= 52 as used in

Figure 5.1. The main di↵erence is the use of local optimization in (B). The algorithm first finds
a counterexample (�4.5, 3). The local optimization improves this counterexample to be (�5, 4).
Note that this improved counterexample gives us a stronger pruning power which shows that
x = [�3, 3] while the original counterexample (�4.5, 3) can only show x = [�4, 4].

5.3 Preliminary Results

We implemented the optimization methods in our delta-SMT solving framework, making use of
the branch-and-prune package provided by IBEX [60], and local optimization routines provided
by the NLopt package [42].

Our goal is to show that the proposed algorithms can solve hard problems that are beyond
the scope of existing complete solvers. We take highly non-convex functions from the collection
of global optimization problems found in [40]. Many of the examples are functions with a large
number of local minima, which highlights the capability of e�cient search of the proposed al-
gorithms. Here, we introduce two cases which show the e↵ectiveness of our methods in finding
the global minimum without being trapped in multiple local minima. All experiments ran on a
machine with Intel 3.40GHz CPU (4-core) and 24GB RAM running OS X 10.11.

Salomon Function (#74 in [40])

f110(x1, x2) = 1 � cos

✓
2⇡

q
x

2
1 + x

2
2

◆
+ 0.1

q
x

2
1 + x

2
2

subject to �100 x1, x2 100.

21

Our algorithm found the global minimum located at (x1, x2) = (0, 0), f110(x1, x2) = 0.0 in 0.031
sec.

W / Wavy Function (#165 in [40])

f165(x1, x2) = 1 � 1

2

2X

i=1

cos(10 ⇤ x

i

)e
�x

2
i

2

subject to �3 x1, x2 3.

22

Momin Jamil and Xin-She Yang, A literature survey of benchmark functions for global optimization problems,  
Int. Journal of Mathematical Modelling and Numerical Optimisation

Solving Exist-forall Formulas

Proposed Work

• Prove that the pruning algorithms terminate.

• Prove that the pruning algorithms are well-defined.

• Finish the implementation, run experiments.

60

61

Time Line &
Summary of Proposed Work

Timeline &  
Summary of Proposed Work

62

• Prove SAT+ICP algorithm terminates.

• Prove correctness of SAT+ICP algorithm.  
 The outputs from naive ICP and SAT+ICP should be
identical.

• Show that SAT+ICP algorithm outperforms naive ICP.

• Use Boxes/LDD data structure to implement Clause
Manager and check the performance gain.

SAT-driven Branch-and-Prune Solving Exist-forall Formulas
• Prove that the pruning algorithms terminate.

• Prove that the pruning algorithms are well-defined.

• Finish the implementation, run experiments.

Plan to finish all before the beginning of Fall semester 2016.

63

Thank you

