Automated Reasoning over the Reals

soonhok@cs.cmu.edu

Optimization

- Used (almost) everywhere
- Classes of Polynomial-time solvable problems (i.e. Convex optimization, Linear programming)
- Other classes reducible to them (i.e. LP relaxation of MLP)

147. Table 3 / Carrom Table Function [58] (Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal)

$$f_{147}(\mathbf{x}) = -[(\cos(x_1)\cos(x_2)) \\ \exp|1 - [(x_1^2 + x_2^2)^{0.5}]/\pi|)^2]/30$$

subject to $-10 \le x_i \le 10$. x2 -10 -10 x1 -5 -5 0 5 0 10 5 0 10 -5 -10 -15 -20 f(-9.6709, -9.6584) = -24.3100 -25

Momin Jamil and Xin-She Yang, **A literature survey of benchmark functions for global optimization problems**, Int. Journal of Mathematical Modelling and Numerical Optimisation 167. Whitley Function [86] (Continuous, Differentiable, Non-Separable, Scalable, Multimodal)

Momin Jamil and Xin-She Yang, **A literature survey of benchmark functions for global optimization problems**, Int. Journal of Mathematical Modelling and Numerical Optimisation

4

Challenges in Optimization

Global Non-convex Highly Nonlinear Multi-objective Combinatorial (disjunctions)

Optimization

Challenges in Optimization

Global Non-convex Highly Nonlinear Multi-objective Combinatorial (disjunctions)

Essentially, they are **NP-Hard** Problems.

"I can't find an efficient algorithm, but neither can all these famous people."

The End of Story?

Advances in Solving NP-Hard Problems

The past two decades witnessed the tremendous progress in practical algorithms for NP-hard problems

- Industrial-sized SAT problems, millions of vars
- Major driving force in HW design and SW analysis

Advances in Solving NP-Hard Problems

1000x Speed-up over 12 years!

Advances in Solving NP-Hard Problems

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Number of problems solved

How to apply?

The advances in discrete domain into hybrid (continuous/discrete) domain?

- Combinatorial structure (discrete)
- Nonlinear dynamics (concrete)

How to apply?

The advances in discrete domain into hybrid (continuous/discrete) domain?

- Combinatorial structure (discrete)
- Nonlinear dynamics (concrete)

Feynman's Algorithm:

- I.Write down the problem
- 2. Think real hard
- 3.Write down the solution

How to apply?

The advances in discrete domain into hybrid (continuous/discrete) domain?

- Combinatorial structure (discrete)
- Nonlinear dynamics (concrete)

Our Approach:

I.Write down problems in first-order logic

- 2. Solve NP-Hard problems
- 3. Interpret solutions

 $\min f(\mathbf{x}) < 0$ is logically $\exists \mathbf{x}. f(\mathbf{x}) < 0$

 $\min f(\mathbf{x}) \text{ s.t. } \phi(\mathbf{x})$

$$\min f(\mathbf{x}) < 0$$

is logically
$$\exists \mathbf{x}. f(\mathbf{x}) < 0$$

Example: Lyapunov Stability

Example: Planning

Example: Planning

$$\exists \vec{x}_0, \vec{x}_1, \dots, \vec{x}_k \exists \vec{x}_0^t, \vec{x}_1^t, \dots, \vec{x}_k^t \exists t_0, t_1, \dots, t_k \\ Init(\vec{x}_0) \land flow_{q_0}(\vec{x}_0, \vec{x}_0^t, t_0) \land jump_{q_0 \to q_1}(\vec{x}_0^t, \vec{x}_1) \land \\ flow_{q_1}(\vec{x}_1, \vec{x}_1^t, t_1) \land jump_{q_1 \to q_2}(\vec{x}_1^t, \vec{x}_2) \land$$

 $flow_{q_k}(\vec{x}_k, \vec{x}_k^t, t_k) \wedge Unsafe(\vec{x}_k^t)$

Encode Problems in First-order Logic Formula

Optimization

 $\exists \mathbf{x}. \forall \mathbf{y}. \ \phi(\mathbf{x}) \land \phi(\mathbf{y}) \to f(\mathbf{x}) \leq f(\mathbf{y})$

• Stability

$$\forall \epsilon \exists \delta \forall x_0 \forall x_t. \ \left((||x_0|| < \delta \land x_t = x_0 + \int_0^t f(s) \mathrm{ds}) \to ||x_t|| < \epsilon \right)$$

Planning

$$\exists \mathbf{x}. \ \bigvee_{i} \bigwedge_{j} f_{i,j}(\mathbf{x})$$

Solving Logic Formula

Big Picture

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment is feasible under the first order theory of **Real**

Big Picture

Boolean Search Non-chronological Backtracking Learning

• • •

(Discrete Domain)

Constraints Solving Validated Numerics Optimization Simulation/Sampling

(Continuous Domain)

Top-down/Bottom Approaches in Theory Solver

Top-Down Approach

Maintain a set of possible solutions Useful to show UNSAT Validated Numerics (i.e. Interval-based methods)

Bottom-Up Approach

Sample points and test them Useful to show SAT Use local-optimization to improve

An Algorithm in Theory Solver: ICP(Interval Constraint Propagation)

Safely **reduce** a search space without removing solutions

Partition a search space into two sub-spaces

Two Termination Conditions of ICP

ANSWER: SAT

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🛛 🗴 dim : 🔤 y dim : 🕤 y ᅌ Next

Pruning Applied

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🗴 dim : 🗙 📀 y dim : y 📀 Next

After steps, pruning reaches a fixed point.

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin X dim : 🗴 😒 Y dim : 🗴 🗘 Next

Branching on X

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🛛 🗴 dim : 🛛 x 😒 y dim : 🛛 y 😂 🛛 Next

Apply Pruning on the Left-hand Box

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🗴 dim : 🗙 📀 y dim : y 📀 Next

After pruning steps, it shows that left-hand box contains NO solution.

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🗴 dim : 🗴 📀 y dim : 🗴 y 😂 Next

Apply Pruning on the Right-hand Box

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🛛 🗴 dim : 🛛 x 😒 y dim : 🛛 y 😒 🛛 Next

Apply Pruning on the Right-hand Box

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🗴 dim : 🗙 📀 y dim : y 📀 Next

Branching on X

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🗴 dim : 🗴 📀 y dim : 🗴 y 😂 Next

Apply Pruning on the Right-hand Box

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🗴 dim : 🗙 😒 y dim : y 😂 Next

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🗴 dim : 🗴 📀 y dim : 🗴 y 😂 Next

 $\exists x \in [0.5, 2.0], y \in [0.0, 2.0] : y = sin(x) \land y = atan(x)$

Begin 🛛 🗴 dim : 🛛 x 😒 y dim : 🛛 y 😒 🛛 Next

Found a small enough Box (width <= 0.001) Answer: delta-SAT

Algorithm of ICP

Algorithm 1: Theory Solving in DPLL $\langle ICP \rangle$	
input : A conjunction of theory atoms, seen as constraints,	
$c_1(x_1,,x_n),,c_m(x_1,,x_n)$, the initial interval bounds on all	
variables $B^0 = I_1^0 \times \cdots \times I_n^0$, box stack $S = \emptyset$, and precision $\delta \in \mathbb{Q}^+$.	
output: δ -sat, or unsat with learned conflict clauses.	
1 $S.push(B_0);$	
2 while $S \neq \emptyset$ do	
$3 B \leftarrow S.\mathrm{pop}();$	
4 while $\exists 1 \leq i \leq m, B \neq \operatorname{Prune}(B, c_i)$ do	
5 //Pruning without branching, used as the assert() function.	Druping
$ B \leftarrow \operatorname{Prune}(B, c_i);$	i i uning
6 end	
7 //The $arepsilon$ below is computed from δ and the Lipschitz constants of	
functions beforehand.	
8 if $B \neq \emptyset$ then	
9 if $\exists 1 \leq i \leq n, I_i \geq \varepsilon$ then	
10 $\{B_1, B_2\} \leftarrow \operatorname{Branch}(B, i);$ //Splitting on the intervals	
$ S.push(\{B_1, B_2\});$	Branching
11 else	Dranching
12 return δ -sat; //Complete check() is successful.	
13 end	
14 end	
15 end	
16 return unsat;	

Pruning using ODEs

$$X_t = X_0 + \int_0^T flow(x(s)) ds$$

pruning on Xt

How can we prune X_t ?

(numerically) Compute the enclosures of the solutions of ODE

(numerically) Compute the enclosures of the solutions of ODE

Take the intersection between the Enclosure and Xt

Pruning on X₀

Pruning using ODEs (on Time)

Pruning using ODEs (on Time) $\int X_t = X_0 + \int_0^T flow(x(s)) ds$ X_t **Enclosures of Solutions of ODEs** X_0 T T_l T_u tPruning on T

Pruning using ODEs (using Invariant)

Implementation: dReal

- Automated reasoning tool over the Reals
- Support nonlinear real functions such a sin, cos, tan, arcsin, arccos, arctan, log, exp, ...
- Support **ODEs** (Ordinary Differential Equations)
- Generating proofs for UNSAT cases [experimental]
- Open-source: <u>https://dreal.github.io</u>

Fort the on Gittub

Applications

- * Power-train Control (Toyota) [HSCC'14, ACC'15]
- * Autonomous Driving (Penn) [SAE'16]
- * Planning (CMU,SIFT) [AAAI'15]
- * Security (MIT,TAMU,QCRI) [CDC'15]
- * Atrial Fibrillation (Stony Brook, TU, CMU) [HSCC'15, CMSB'14]
- * Diabetes (Penn) [ADHS'15]

. . .

- * Prostate Cancer (Pitt, CMU) [HSCC'15]
- * Microfluid Chip Design (Waterloo)

Application: Powertrain Control

$$\dot{p} = c_1 \left(2\hat{u}_1 \sqrt{\frac{p}{c_{11}} - \left(\frac{p}{c_{11}}\right)^2} - \left(c_3 + c_4 c_2 p + c_5 c_2 p^2 + c_6 c_2^2 p\right) \right)$$

$$\dot{r} = 4 \left(\frac{c_3 + c_4 c_2 p + c_5 c_2 p^2 + c_6 c_2^2 p}{c_{13} (c_3 + c_4 c_2 p_{est}^2 + c_5 c_2 p_{est}^2 + c_6 c_2^2 p_{est}) (1 + i + c_{14} (r - c_{16}))} - r \right)$$

$$\dot{p}_{est} = c_1 \left(2\hat{u}_1 \sqrt{\frac{p}{c_{11}} - \left(\frac{p}{c_{11}}\right)^2} - c_{13} \left(c_3 + c_4 c_2 p_{est} + c_5 c_2 p_{est}^2 + c_6 c_2^2 p_{est}\right) \right)$$

$$\dot{i} = c_{15} (r - c_{16})$$

$$(21)$$

Figure 5: System dynamics for the Powertrain Control System.

recently in the literature [11]. There has been interest in adopting MPC in the automotive industry, but several hurdles remain, such as the ability to prove safety properties of the closed-loop system. A technique that provides a means to, for example, prove stability or to provide guarantees on performance bounds would help to ease the way for this new technology to find application in industry. Below, we apply our technique to prove this system is stable by discovering a discrete-time Lyapunov function that is valid over a given domain.

The purpose of the MPC system for this application is to regulate the manifold pressure (MAP) and exhaust gas recirculation (EGR) rate. The MAP affects the amount of air injected into the cylinder for the combustion phase of the engine; accurately controlling the MAP directly affects We use a quadratic Lyapunov template and define the domain as the ball of radius 20.0 centered at the origin. The search procedure produces the following Lyapunov candidate in 107.29 seconds:

$$\mathbf{P} = \begin{bmatrix} 1.625 & -0.309 & 0.740 \\ -0.309 & 0.886 & 0.208 \\ 0.740 & 0.208 & 1.688 \end{bmatrix}.$$

A query to dReal takes 133 seconds to prove that the resulting candidate Lyapunov function is a proper Lyapunov function over the domain. This provides a proof of stability as well as a mechanism to produce forward invariant sets for the MPC system.

James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, Nikos Aréchiga, "Simulation-guided Lyapunov Analysis for Hybrid Dynamical Systems" Hybrid Systems: Computation and Control 2014

Application: Validated Planning

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,

"APEX: A Tool for Autonomous Vehicle Plan Verification and Execution", In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016 62

Application: Validated Planning

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,

"APEX: A Tool for Autonomous Vehicle Plan Verification and Execution", In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016

63

Tools based on dReal

- * APEX: A Tool for Autonomous Vehicle Plan Verification and Execution (Toyota/UPenn)
- * BioPSy: Parameter set synthesis on biological models (Univ. of Newcastle)
- * dReach: Reachability analysis tool for hybrid system (CMU)
- * Osmosis: Semantic importance sampling for statistical model checking (CMU SEI)
- * ProbReach: Probabilistic reachability analysis of hybrid systems (Univ. of Newcastle)
- * SReach: Bounded model checker for stochastic hybrid systems (CMU)
- * Sigma: Probabilistic programming language (MIT)

Conclusion

- First-order logic = Language to express general problems
- Handle combinatorial structure + nonlinear dynamics
- Existing optimization/simulation algorithms/techniques can be integrated
- Possible to generate proofs for verification
- Open-source Implementation is available <u>https://github.com/dreal/dreal3</u>

Any Questions?

FAQs

Q1. How to pick ϵ from a given $\delta \in Q^+$ in ICP Algorithm? A1:

- For all f_i , find ϵ_i such that

$$\forall \vec{x}, \vec{y} \in B, ||x - y|| < \epsilon_i \implies |f_i(\vec{x}) - f_i(\vec{y})| < \delta$$

- Fix ϵ be the minimum of $\epsilon_i s$

$$\epsilon = \min(\epsilon_1, \ldots, \epsilon_n)$$

FAQs

Q2. Lipschitz continuity?

A2: A Lipschitz continuous function is limited in how fast it can change: there exists a definite real number K such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; this bound is called a "Lipschitz constant" of the function (or "modulus of uniform continuity").

$$\frac{d_Y(f(x_1), f(x_2))}{d_X(x_1, x_2)} \le K.$$

FAQs

Q3. Optimization?

A3: Check the next two slides

Counterexample-guided Global Optimization (If time permits)

 $\exists^{[-5,5]} x. \forall^{[-4,4]} y. \ x^2 + y^2 <= 5^2$

Counterexample-guided Global Optimization using Local Optimization (If time permits)

 $\exists^{[-5,5]} x. \forall^{[-4,4]} y. \ x^2 + y^2 <= 5^2$

