
Automated Reasoning over the Reals

Soonho Kong 
soonhok@cs.cmu.edu

mailto:soonhok@cs.cmu.edu

Optimization

• Used (almost) everywhere

• Classes of Polynomial-time solvable problems 
(i.e. Convex optimization, Linear programming)

• Other classes reducible to them  
(i.e. LP relaxation of MLP)

2

3

Momin Jamil and Xin-She Yang, A literature survey of benchmark functions for global optimization problems,  
Int. Journal of Mathematical Modelling and Numerical Optimisation

4

Momin Jamil and Xin-She Yang, A literature survey of benchmark functions for global optimization problems,  
Int. Journal of Mathematical Modelling and Numerical Optimisation

Challenges in Optimization

5

Global
Non-convex 
Highly Nonlinear
Multi-objective
Combinatorial (disjunctions)
{ }Optimization

Challenges in Optimization

6

Global
Non-convex 
Highly Nonlinear
Multi-objective
Combinatorial (disjunctions)
{ }Optimization

Essentially, they are NP-Hard Problems.

6 - 20 Computational Complexity P. Parrilo and S. Lall, CDC 2003 2003.12.07.06

The famous cartoon

From Garey & Johnson (1979).

7

Essentially, they are NP-Hard Problems.

8

The End of Story?

Advances in Solving NP-Hard Problems

9

The past two decades witnessed the tremendous progress
in practical algorithms for NP-hard problems

 - Industrial-sized SAT problems, millions of vars 
 - Major driving force in HW design and SW analysis

Advances in Solving NP-Hard Problems

10

4

S. A. Seshia 7

My Experience with SAT Solving
Speed-up of 2012 solver over other solvers

1

10

100

1,000

Gra
sp

 (2
00

0)

zC
haf

f (
20

01
)

Ber
kM

in
 (2

00
2-

03
)

zC
haf

f (
20

03
-0

4)

Sieg
e (

20
04

)

Min
isa

t +
 S

at
Elit

e
(2

00
5)

Min
isa

t2
 (2

00
6)

Rsa
t +

 S
at

Elit
e (

20
07

)

Pre
co

sa
t (

20
09

)

Cry
pto

m
in

isa
t (

20
10

)

Glu
co

se
 2.

0 (
20

11
)

Glu
co

se
 2.

1 (
20

12
)

Solver

S
pe

ed
-u

p
(lo

g
sc

al
e)

S. A. Seshia 8

Terminology
• Literal

• Clause

• Conjunctive Normal Form (CNF)

• Disjunctive Normal Form (DNF)

• Tautology
– Complexity of tautology checking for propositional

logic?

1000x Speed-up over 12 years!

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180

C
PU

 T
im

e
(in

 se
co

nd
s)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)

Figure 1: Evolution of the best solvers from 2002 to 2010 on the application benchmarks from the SAT 2009
competition using the cumulative number of problems solved (x axis) within a specific amount of time (y
axis). The farther to the right the data points are, the better the solver.

The strong emphasis on application benchmarks
led the community to organize a SAT Race in 2006,
an event especially dedicated to industrial applica-
tion problems (for details on the latest SAT Race,
see http://baldur.iti.uka.de/sat-race-2010/,
chaired by Carsten Sinz). Since then, SAT Competi-
tion and SAT Race have alternated, the former hav-
ing been organized in the odd years, and the latter
in even years.

2 Details on the Competitions

In the main track of the competition, the goal is to de-
termine whether a given SAT instance in conjunctive

normal form (CNF) is satisfiable or not as quickly as
possible. For satisfiable formulas, solvers are required
to output a model of the formula as a certificate.

The main track is run in two phases. The best
solvers of the first phase (selected by the competi-
tion jury) enter the second phase and are allocated
a longer timeout. Solvers are awarded according to
the number of benchmarks solved during the second
stage, using the cumulated time required to solve
those benchmarks to break ties. In 2011, two dif-
ferent rankings were used: one based on CPU time
which promotes solvers using resources as e�ciently
as possible (e.g. sequential solvers) and another one
based on wall clock time which promotes solvers using
all available resources to answer as quickly as possible

2

Advances in Solving NP-Hard Problems

11

12

How to apply?  
The advances in discrete domain

into hybrid (continuous/discrete) domain?

- Combinatorial structure (discrete)  
- Nonlinear dynamics (concrete)

13

How to apply?  
The advances in discrete domain

into hybrid (continuous/discrete) domain?

Feynman’s Algorithm:
1. Write down the problem  
2. Think real hard
3. Write down the solution

- Combinatorial structure (discrete)  
- Nonlinear dynamics (concrete)

14

How to apply?  
The advances in discrete domain

into hybrid (continuous/discrete) domain?

Our Approach:
1. Write down problems in first-order logic  
2. Solve NP-Hard problems
3. Interpret solutions

- Combinatorial structure (discrete)  
- Nonlinear dynamics (concrete)

min f(x) < 0

Example: Optimization

15

f(x)

x

min f(x) < 0

9x. f(x) < 0

Example: Optimization

16

is logically

f(x)

x

min f(x) < 0

9x. f(x) < 0

min f(x) s.t. �(x)

Example: Optimization

17

is logically

min f(x) < 0

9x. f(x) < 0

min f(x) s.t. �(x)

9x.8y. �(x) ^ �(y) ! f(x) f(y)

Example: Optimization

18

is logically

is logically

Example: Lyapunov Stability

19

Vector field of a
dynamical system

8✏9�8x08xt.

✓
(||x0|| < � ^ xt = x0 +

Z t

0
f(s)ds) ! ||xt|| < ✏

◆

x0

xt

✏

�

Example: Planning

20

Speed up Turn

Drift

Parked

 speed up turn

 drift

parked.

d

dt

~x =
d

dt

2

666664

x

v

↵

Fr
...

3

777775
= ~

f(~x)
d

dt

~x = ~g(~x)

d

dt

~x = ~

h(~x)

?

?

?

Example: Planning

21

…

~x0

~x

t
0

~x1
~x

t
1

~x2

~x

t
k�1

~xk

~x

t
k

Unsafe

Init

step 0 step 1 … step k

modeq0 modeq1 modeqk

flowq0(~x0, ~x
t
0, t0)

flowq1(~x1, ~x
t
1, t1)

flowqk(~xk, ~x
t
k, tk)

jumpq0!q1(~x
t
0, ~x1)

jumpq1!q2(~x
t
1, ~x2)

jumpqk�1!qk(~x
t
k�1, ~xk)

9~x0, ~x1, . . . , ~xk9~xt
0, ~x

t
1, . . . , ~x

t
k9t0, t1, . . . , tk

Init(~x0) ^ flowq0(~x0, ~x
t
0, t0) ^ jumpq0!q1(~x

t
0, ~x1)^

flowq1(~x1, ~x
t
1, t1) ^ jumpq1!q2(~x

t
1, ~x2)^

. . .

f lowqk(~xk, ~x
t
k, tk) ^ Unsafe(~xk)

t

Encode Problems in 
First-order Logic Formula

• Optimization  
 

• Stability  
 

• Planning 

22

9x.8y. �(x) ^ �(y) ! f(x) f(y)

9x.
_

i

^

j

fi,j(x)

8✏9�8x08xt.

✓
(||x0|| < � ^ xt = x0 +

Z t

0
f(s)ds) ! ||xt|| < ✏

◆

Solving Logic Formula

23

VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

Download at Boykma.Com

Big Picture

24

SAT
Solver

Theory 
Solver

 -SAT + Solution  
or 

UNSAT + Proof

�

�

Logic Formula

Numerical
Error

��

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment  

is feasible under the first order theory of Real

Big Picture

25

SAT
Solver

Theory 
Solver

List of Constraints

 -SAT (+Solution)  
or

UNSAT (+Explanation)

Boolean Search
Non-chronological Backtracking

Learning 
…
 

(Discrete Domain)

Constraints Solving
Validated Numerics

Optimization
Simulation/Sampling

… 
(Continuous Domain)

�

Top-down/Bottom Approaches  
in Theory Solver

26

by Local Optimization

Top-Down Approach

Maintain a set of possible solutions
Useful to show UNSAT

Validated Numerics  
(i.e. Interval-based methods)

Bottom-Up Approach

Sample points and test them
Useful to show SAT 

Use local-optimization to improve

Pruning Branch

Fixedpoint
Computation

Safely reduce a search space  
without removing solutions

Partition a search space  
into two sub-spaces

An Algorithm in Theory Solver:  
ICP(Interval Constraint Propagation)

27

δ-sat Unsat

ε

Two Termination Conditions of ICP

28

29

Example of ICP

30

Example of ICP

31

Example of ICP

Pruning Applied

32

Example of ICP

After steps, pruning reaches a fixed point.

33

Example of ICP

Branching on X

34

Example of ICP

Apply Pruning on the Left-hand Box

35

Example of ICP

After pruning steps,
it shows that left-hand box contains NO solution.

36

Example of ICP

Apply Pruning on the Right-hand Box

37

Example of ICP

Apply Pruning on the Right-hand Box

38

Example of ICP

Branching on X

39

Example of ICP

Apply Pruning on the Right-hand Box

40

Example of ICP

41

Example of ICP

42

Example of ICP

43

Example of ICP

44

Example of ICP

45

Example of ICP

46

Example of ICP

47

Example of ICP

Found a small enough Box (width <= 0.001)
Answer: delta-SAT

48

Pruning

Branching

Algorithm of ICP

49

Xt = X0 +

Z T

0
flow(x(s))ds

Pruning using ODEs

Xt

X0

T

Xt

X0

TPrune

50

pruning on Xt
t

Xt
X0

T

How can we prune ?

Xt = X0 +

Z T

0
flow(x(s))ds

Xt

Pruning using ODEs 
(Forward)

51

t

Xt
X0

T�t �t �t

Xt = X0 +

Z T

0
flow(x(s))ds

(numerically) Compute the enclosures of the solutions of ODE

Pruning using ODEs
(Forward)

52

t

Xt
X0

T

Xt = X0 +

Z T

0
flow(x(s))ds

Enclosures of Solutions of ODEs

(numerically) Compute the enclosures of the solutions of ODE

Pruning using ODEs
(Forward)

53

t

Xt
X 0

tX0

T

Xt = X0 +

Z T

0
flow(x(s))ds

Enclosures of Solutions of ODEs

Take the intersection between the Enclosure and Xt

Pruning using ODEs
(Forward)

54

t

T

Xt

X0

X 0
0

Pruning on X0

Enclosures of Solutions of ODEs

Pruning using ODEs
(Backward)

55

t

Xt

X0

T

Pruning on T

Xt = X0 +

Z T

0
flow(x(s))ds

TuTl

Pruning using ODEs
(on Time)

56

t

Xt

X0

T

Pruning on T

Xt = X0 +

Z T

0
flow(x(s))ds

Enclosures of Solutions of ODEs

TuTl

Pruning using ODEs
(on Time)

57

t

Xt

X0

T

T 0

Pruning on T

Enclosures of Solutions of ODEs

Xt = X0 +

Z T

0
flow(x(s))ds

TuTl T 0
u

Pruning using ODEs
(on Time)

58

Invariant

t

Xt

X 0
t

T

X0

Pruning with Invariant

Pruning using ODEs
(using Invariant)

Implementation: dReal

59

• Automated reasoning tool over the Reals

• Support nonlinear real functions such a sin, cos, tan, arcsin,
arccos, arctan, log, exp, …

• Support ODEs (Ordinary Differential Equations)

• Generating proofs for UNSAT cases [experimental]

• Open-source: https://dreal.github.io

https://dreal.github.io

Applications

60

* Power-train Control (Toyota) [HSCC’14, ACC’15]

* Autonomous Driving (Penn) [SAE’16]

* Planning (CMU,SIFT) [AAAI’15]

* Security (MIT,TAMU,QCRI) [CDC’15]

* Atrial Fibrillation (Stony Brook, TU, CMU) [HSCC’15,CMSB’14]

* Diabetes (Penn) [ADHS’15]

* Prostate Cancer (Pitt, CMU) [HSCC’15]

* Microfluid Chip Design (Waterloo)

…

Application: Powertrain Control

61

James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, Nikos Aréchiga, “Simulation-guided Lyapunov Analysis for Hybrid Dynamical Systems” 
Hybrid Systems: Computation and Control 2014

Application: Validated Planning

62

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,  
“APEX: A Tool for Autonomous Vehicle Plan Verification and Execution”, In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016

w
buffer

Application: Validated Planning

63

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,  
“APEX: A Tool for Autonomous Vehicle Plan Verification and Execution”, In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016

Tools based on dReal

64

* APEX: A Tool for Autonomous Vehicle Plan Verification and Execution (Toyota/UPenn)  

* BioPSy: Parameter set synthesis on biological models (Univ. of Newcastle)  

* dReach: Reachability analysis tool for hybrid system (CMU)  

* Osmosis: Semantic importance sampling for statistical model checking (CMU SEI)

* ProbReach: Probabilistic reachability analysis of hybrid systems (Univ. of Newcastle)

* SReach: Bounded model checker for stochastic hybrid systems (CMU)

* Sigma: Probabilistic programming language (MIT)

Conclusion

• First-order logic = Language to express general problems

• Handle combinatorial structure + nonlinear dynamics

• Existing optimization/simulation algorithms/techniques can
be integrated

• Possible to generate proofs for verification

• Open-source Implementation is available  
https://github.com/dreal/dreal3

65

https://github.com/dreal/dreal3

Any Questions?

66

FAQs

67

Q1. How to pick ε from a given δ∈ ℚ⁺ in ICP Algorithm?

8~x, ~y 2 B, ||x� y|| < ✏i =) |fi(~x)� fi(~y)| < �

✏ = min(✏1, . . . , ✏n)

A1:

 - For all fᵢ, find εᵢ such that

 - Fix ε be the minimum of εᵢs

FAQs

68

Q2. Lipschitz continuity?

A2: A Lipschitz continuous function is limited in how fast it
can change: there exists a definite real number K such that,
for every pair of points on the graph of this function, the
absolute value of the slope of the line connecting them is
not greater than this real number; this bound is called a
"Lipschitz constant" of the function (or "modulus of
uniform continuity").

dY (f(x1), f(x2))

dX(x1, x2)
 K.

FAQs

69

Q3. Optimization?

A3: Check the next two slides

Counterexample-guided Global Optimization  
(If time permits)

70

5

5 x

y

5

5 x

y

5

5 x

y

9[�5,5]
x.8[�4,4]

y. x

2 + y

2
<= 52

(A) Initial Search Space: x = [-5, 5] (B) Find a counterexample (C) Prune x using the counterexample

-4.5

3 3

-4 4

71

5

5 x

y

5

5 x

y

5

5 x

y

9[�5,5]
x.8[�4,4]

y. x

2 + y

2
<= 52

(A) Initial Search Space: x = [-5, 5] (B) Find a counterexample and
improve it using local optimization

(C) Prune x using the counterexample

-4.5

3

4

-3 3

44
local optimization

Counterexample-guided Global Optimization  
using Local Optimization (If time permits)

