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Cardiac Cell Action Potential Model (BCF Model[Bueno2008])
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State Variables 
- u: cell’s transmembrane potential 
- v: current at fast channel gate 
- w, s: currents at two slow channel gate

Parameters 
- ε: external stimulus current to cell
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depict the dynamical changes of proliferation rates induced
by perturbing androgen levels that are di�cult for previous
models (e.g. [20]) to capture. It also addresses the variabil-
ity in individual patients and is able to accurately reproduce
the datasets of di↵erent patients.

– Second, we obtain interesting insights on CRC prolifera-
tion dynamics through analysis of the nonlinear model. Our
results support the hypothesis that the physiological level of
androgen reduce CRCs [20], while rule out other hypotheses,
for instance, CRCs proliferate at a constant rate [32].

– Third, we propose a computational framework for iden-
tifying patient-specific IAS schedules for postponing the po-
tential cancer relapse. Specifically, we obtain personalized
model parameters by fitting to the clinical data in order
to characterize individual patients. We then use �-decision
produces and bounded model checking to predict therapeu-
tic strategies.

Through this case study, we aim to highlight the oppor-
tunity for solving realistic biomedical problems using formal
methods. In particular, methods based on �-reachability
analysis suggest a very promising direction to proceed.

Related Work. We perform parameter synthesis, which re-
quires the computation of concrete trajectories and param-
eter values. This can not be done by simply computing
an over-approximation of the forward reachable set. Con-
sequently, reachable set computation tools such as SpaceEx
[11] and Flow* [7] can not be directly used. There exists vari-
ous approaches for performing parameter synthesis through
extra refinement on the reachable sets [10, 2, 12], but are
restricted to dynamics that are much simpler than the mod-
els we encounter here. On the other hand, other SMT-based
methods for hybrid systems [8, 9], which can perform param-
eter synthesis in a similar manner, mostly focus on e�cient
handling of complex discrete transitions but are restricted
to models with simpler continuous dynamics.

The rest of the paper is organized as follows. We de-
scribe our model in Section 2 and present preliminaries on
�-reachability analysis in Section 3. In Section 4, we present
the biological insights we gained through this case study, as
well as the model-predicted treatment schemes for individ-
ual patients. In the final section, we summarize the paper
and discuss future work.

2. A HYBRID MODEL OF PROSTATE CAN-
CER PROGRESSION

In this section, we propose a hybrid automata based model
in order to reproduce the clinical observations [4, 5] of prostate
cancer cell dynamics in response to the IAS therapy. It is
known that the proliferation and survival of prostate cancer
cells depend on the levels of androgens, specifically testos-
terone and 5↵-dihydrotestosterone (DHT). Here we consider
two distinct subpopulations of prostate cancer cells: hor-
mone sensitive cells (HSCs) and castration resistant cells
(CRCs). Androgen deprivation can lead to remarkable de-
creases of the proliferation and survival rates of HSCs, but
also up-regulates the conversion from HSCs to CRCs, which
will keep proliferating under low androgen level. The corre-
sponding hybrid automata model is shown in Figure 1.

Our model is based on previous models developed by [22,
21, 20]. It takes into account the population of HSCs, the
population of CRCs, as well as the serum androgen concen-
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Figure 1: A hybrid automaton model for prostate

cancer hormone therapy. Symbol “||” denotes the

parallel composition of the two automata.

tration, represented as x(t), y(t), and z(t), respectively. In
addition, it also includes the serum prostate-specific antigen
(PSA) level v(t), which is a commonly used biomarker for
assessing the total population of prostate cancer cells. The
model has two modes: on-treatment mode and o↵-treatment
mode (note that the auxiliary Mode 3 will only be used
in Section 4.2). Following [20], in the o↵-treatment mode
(Mode 2), the androgen concentration is maintained at the
normal level z0 by homeostasis. In the on-treatment (Mode
1), the androgen is cleared at a rate 1

⌧

. Further, we also
introduce a basal androgen production rate µ

z

, in order to
reproduce the measured basal testosterone levels in response
to androgen suppression [4, 5].
The net growth rate of x(t) equals to (prolif

x

� apop
x

�
conv

x

)·x(t), where prolif
x

, apop
x

and conv
x

denote the pro-
liferation, apoptosis and conversion rates, respectively. In
previous studies such as [22, 21, 20], the prolif

x

and apop
x

were modeled using Michaelis-Menten-like (MML) functions,

in the form of V
max

+ (1� V
max

) z(t)
z(t)+Km

, where V
max

and
K

m

are kinetic parameters. This approach will result in an-
drogen response curves as shown in Figure 2(a). In particu-
lar, when one decreases the androgen level starting from the
normal level, prolif

x

(or apop
x

) begins to decrease (or in-
crease) first slowly and then fast until a su�ciently low level
of androgen is reached. However, this is inconsistent with
the clinical observations presented in [4, 5]. The data show
that for most of the patients, androgen suppression around
normal level will induce an immediate decrease of the PSA
level, which implies an fast decrease (or increase) of prolif

x

(or apop
x

). Therefore, instead of the MML functions, we
adopt sigmoid functions, in the form of 1

1+exp(�(z(t)�k1)·k2)
,

to model prolif
x

and apop
x

. The corresponding androgen
response curves are shown in Figure 2(b). Following [20],
we model the conversion rate, proliferation rate and the
apoptosis rate of y(t) as m1(1 � z(t)

z0
), ↵

y

(1 � d z(t)
z0

) and

�
y

, respectively. The PSA level v (ng ml�1) is defined as
v(t) = c1 · x(t) + c2 · y(t).
The transitions between two modes depends on the val-

ues of v, dv/dt and an auxiliary variable w, which measures
the time taken in a mode. Specifically, for each patient we
starts with mode 1 to apply the treatment. When the PSA
level drops to certain threshold r0 or w hits time out thresh-
old t

max

, the treatment will be suspended. When the PSA

Prostate Cancer Treatment Model [Bing2015]

Hybrid Systems
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x: Population of HSCs (Hormone Sensitive Cells)  
y: Population of CRCs (Cancer Resistant Cells)

z: Androgen concentration  
v: PSV level, biomarker for the total population of cancer cells
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Improper functioning of cardiac cell ionic channels can cause 
the cells to lose excitability, which disorders electric wave 
propagation and leads to cardiac abnormalities such as 
ventricular tachycardia or fibrillation.
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Cardiac Cell Action Potential 

Normal Condition Atrial Fibrillation



Reachability Analysis of Hybrid Systems

Can we find a set of initial values/parameters for which  
a cardiac cell loses excitability? (= can it reach mode 4?)
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- CAS(Continuous Androgen Suppression) is known to fail.  
- IAS(Intermittent Androgen Suppression) works better 

Prostate Cancer Treatment Model

y Reduce side effects and financial cost
y May delay the time to relapse (avoid emergence of CRCs)

6

Intermittent Androgen Suppression

Time
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Hormone sensitive cancer cells (HSCs) Castration resistant cancer cells (CRCs)
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- CAS(Continuous Androgen Suppression) is known to fail.  
- IAS(Intermittent Androgen Suppression) works better 
- However, we need to identify patient-specific schedules.

Reachability Analysis of Hybrid Systems

10

y Different patients may response differently to the 
same treatment scheme (r0 = 4 and r1 = 10)

18

Personalized Therapy Design 
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Can we find a personalized treatment schedule which prevents  
the cancer recurrence in N days? 

depict the dynamical changes of proliferation rates induced
by perturbing androgen levels that are di�cult for previous
models (e.g. [20]) to capture. It also addresses the variabil-
ity in individual patients and is able to accurately reproduce
the datasets of di↵erent patients.

– Second, we obtain interesting insights on CRC prolifera-
tion dynamics through analysis of the nonlinear model. Our
results support the hypothesis that the physiological level of
androgen reduce CRCs [20], while rule out other hypotheses,
for instance, CRCs proliferate at a constant rate [32].

– Third, we propose a computational framework for iden-
tifying patient-specific IAS schedules for postponing the po-
tential cancer relapse. Specifically, we obtain personalized
model parameters by fitting to the clinical data in order
to characterize individual patients. We then use �-decision
produces and bounded model checking to predict therapeu-
tic strategies.

Through this case study, we aim to highlight the oppor-
tunity for solving realistic biomedical problems using formal
methods. In particular, methods based on �-reachability
analysis suggest a very promising direction to proceed.

Related Work. We perform parameter synthesis, which re-
quires the computation of concrete trajectories and param-
eter values. This can not be done by simply computing
an over-approximation of the forward reachable set. Con-
sequently, reachable set computation tools such as SpaceEx
[11] and Flow* [7] can not be directly used. There exists vari-
ous approaches for performing parameter synthesis through
extra refinement on the reachable sets [10, 2, 12], but are
restricted to dynamics that are much simpler than the mod-
els we encounter here. On the other hand, other SMT-based
methods for hybrid systems [8, 9], which can perform param-
eter synthesis in a similar manner, mostly focus on e�cient
handling of complex discrete transitions but are restricted
to models with simpler continuous dynamics.

The rest of the paper is organized as follows. We de-
scribe our model in Section 2 and present preliminaries on
�-reachability analysis in Section 3. In Section 4, we present
the biological insights we gained through this case study, as
well as the model-predicted treatment schemes for individ-
ual patients. In the final section, we summarize the paper
and discuss future work.

2. A HYBRID MODEL OF PROSTATE CAN-
CER PROGRESSION

In this section, we propose a hybrid automata based model
in order to reproduce the clinical observations [4, 5] of prostate
cancer cell dynamics in response to the IAS therapy. It is
known that the proliferation and survival of prostate cancer
cells depend on the levels of androgens, specifically testos-
terone and 5↵-dihydrotestosterone (DHT). Here we consider
two distinct subpopulations of prostate cancer cells: hor-
mone sensitive cells (HSCs) and castration resistant cells
(CRCs). Androgen deprivation can lead to remarkable de-
creases of the proliferation and survival rates of HSCs, but
also up-regulates the conversion from HSCs to CRCs, which
will keep proliferating under low androgen level. The corre-
sponding hybrid automata model is shown in Figure 1.

Our model is based on previous models developed by [22,
21, 20]. It takes into account the population of HSCs, the
population of CRCs, as well as the serum androgen concen-
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Figure 1: A hybrid automaton model for prostate

cancer hormone therapy. Symbol “||” denotes the

parallel composition of the two automata.

tration, represented as x(t), y(t), and z(t), respectively. In
addition, it also includes the serum prostate-specific antigen
(PSA) level v(t), which is a commonly used biomarker for
assessing the total population of prostate cancer cells. The
model has two modes: on-treatment mode and o↵-treatment
mode (note that the auxiliary Mode 3 will only be used
in Section 4.2). Following [20], in the o↵-treatment mode
(Mode 2), the androgen concentration is maintained at the
normal level z0 by homeostasis. In the on-treatment (Mode
1), the androgen is cleared at a rate 1

⌧

. Further, we also
introduce a basal androgen production rate µ

z

, in order to
reproduce the measured basal testosterone levels in response
to androgen suppression [4, 5].
The net growth rate of x(t) equals to (prolif

x

� apop
x

�
conv

x

)·x(t), where prolif
x

, apop
x

and conv
x

denote the pro-
liferation, apoptosis and conversion rates, respectively. In
previous studies such as [22, 21, 20], the prolif

x

and apop
x

were modeled using Michaelis-Menten-like (MML) functions,

in the form of V
max

+ (1� V
max

) z(t)
z(t)+Km

, where V
max

and
K

m

are kinetic parameters. This approach will result in an-
drogen response curves as shown in Figure 2(a). In particu-
lar, when one decreases the androgen level starting from the
normal level, prolif

x

(or apop
x

) begins to decrease (or in-
crease) first slowly and then fast until a su�ciently low level
of androgen is reached. However, this is inconsistent with
the clinical observations presented in [4, 5]. The data show
that for most of the patients, androgen suppression around
normal level will induce an immediate decrease of the PSA
level, which implies an fast decrease (or increase) of prolif

x

(or apop
x

). Therefore, instead of the MML functions, we
adopt sigmoid functions, in the form of 1

1+exp(�(z(t)�k1)·k2)
,

to model prolif
x

and apop
x

. The corresponding androgen
response curves are shown in Figure 2(b). Following [20],
we model the conversion rate, proliferation rate and the
apoptosis rate of y(t) as m1(1 � z(t)

z0
), ↵

y

(1 � d z(t)
z0

) and

�
y

, respectively. The PSA level v (ng ml�1) is defined as
v(t) = c1 · x(t) + c2 · y(t).
The transitions between two modes depends on the val-

ues of v, dv/dt and an auxiliary variable w, which measures
the time taken in a mode. Specifically, for each patient we
starts with mode 1 to apply the treatment. When the PSA
level drops to certain threshold r0 or w hits time out thresh-
old t

max

, the treatment will be suspended. When the PSA

x: Population of HSCs (Hormone Sensitive Cells)  
y: Population of CRCs (Cancer Resistant Cells)

z: Androgen concentration  
v: PSV level, biomarker for the total population of cancer cells
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Can we find a personalized treatment schedule which prevents  
the cancer recurrence in N days? 

Table 3: Estimated personalized parameters and suggested treatment schemes

Parameter Patient#1 Patent#11 Patient # 15 Patient#26

↵x 0.0204 d�1 0.0204 d�1 0.0213 d�1 0.0197 d�1

↵y 0.0242 d�1 0.0242 d�1 0.0242 d�1 0.0242 d�1

�x 0.0201 d�1 0.02 d�1 0.01 d�1 0.0175 d�1

�y 0.0168 d�1 0.0158 d�1 0.0168 d�1 0.0168 d�1

k1 10.0 nM 7.0 nM 7.0 nM 10.0 nM
k2 1.0 1.0 1.0 1.0
k3 10.0 nM 7.0 nM 7.4 nM 10.0 nM
k4 2 2 2 2
m1 0.00005 d�1 0.00005 d�1 0.00005 d�1 0.00005 d�1

z0 12.0 nM 9.0 nM 8.0 nM 12.0 nM
⌧ 12.5 d 12.5 d 12.5 d 12.5 d
�x 0.01 d�1 0.0121 d�1 0.01 d�1 0.01 d�1

µx 0.05 d�1 0.06 d�1 0.02 d�1 0.03 d�1

µz 0.02 d�1 0.02 d�1 0.02 d�1 0.02 d�1

Scheme r0 = 5.2, r1 = 10.8 N.A r0 = 1.9, r1 = 8.0 r0 = 4.6, r1 = 10.7
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Figure 6: Simulated PSA profiles of patients with
di↵erent parameters. (a) Patient A: ↵y = 0.0242,
�y = 0.0168, m1 = 0.00005, z(0) = 12, r0 = 4, r1 = 10
(b) Patient B: ↵y = 0.0328, �y = 0.013, z(0) = 13,
m1 = 0.0001, r0 = 4, r1 = 10 (c) Patient C: ↵y = 0.0426,
�y = 0.189, m1 = 0.00005, z(0) = 15, r0 = 4, r1 = 10
(d) Patient C: ↵y = 0.0426, �y = 0.189, m1 = 0.00005,
z(0) = 15, r0 = 4, r1 = 10.6.

Given the parameter values of an particular patient, we can
design a treatment scheme, which might help him avoid can-
cer relapse with bounded time by solving the following pa-
rameter identification problem: (i) set the ranges of schedul-
ing parameters as r0 2 [0, 7.99] (nM) and r1 2 [8, 15]; (ii)
check if H3 can reach the goal state without violating the
“no cancer relapse” invariants within 1 year. If unsat was
returned, it means that androgen suppression therapy is not
suitable for the patient. The patient has to resort to other
kinds of therapeutic interventions. Otherwise, when the �-
sat answer is returned, a treatment scheme containing fea-
sible values of r0 and r1 will also be returned, which could
help preventing or delaying the relapse within bounded time.
Note that if r0 = 0 is returned, it implies that the CAS
scheme, instead of IAS scheme, might be more suitable for
the patient.

The personalized parameters of individual patients can be
obtained by collectively fitting the available experimental
data using global optimization method. We tested our method
on real patients data collected by [4]1. The parameter val-
ues for each randomly selected patient were estimated by
fitting the model to the PSA time serials data under the IAS
therapy using evolutionary strategy search. As an example,
Figure 7 shows the comparison between model predictions
and the experimental data of PSA and androgen levels for
Patient#1, Patient#11, Patient#15, and Patient#26. We
then predicted the treatment schemes for the future year us-
ing �-reachability analysis (Run#6 for Patient#1, Run#7
for Patient#15, Run#8 for Patient#26 and Run#9 for Pa-
tient#11, Table 2). The results are summarized in Table 3.
Note that for Patient#11, unsat was returned, implying that
no suitable treatment schemes were identified. This might
be due to the raised population size of CRCs in the late
phase of clinical trails.

Patient#26 
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Figure 7: Model prediction vs. experimental data.

1Data available at http://www.nicholasbruchovsky.com/

clinicalResearch.html.
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Can we automate a non-trivial parking?

Speed up Turn

Drift
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d

dt
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d
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Can we automate a non-trivial parking?
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“Tesla Motors will be rolling out an automated car passing feature, 
but which is initiated by the human driver as a way to make the latter 
ultimately responsible for the outcomes.”

Reachability Analysis of Hybrid Systems

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,  
“APEX: A Tool for Autonomous Vehicle Plan Verification and Execution”, In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016
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“Tesla Motors will be rolling out an automated car passing feature, 
but which is initiated by the human driver as a way to make the latter 
ultimately responsible for the outcomes.”

Reachability Analysis of Hybrid Systems

“Randomized testing, where the configurations are sampled from 
hypercubes of parameters, is not a scalable solution: suppose we 
decide to sample only 10 points in the range of every state variable. For 
our 7D model, and with 2 cars, this yields a total of 1014 simulations. 
Say we wish to simulate 10 seconds. Even if a simulation runs in real-
time, this still requires 10∗1014 seconds = 30 million years to 
complete.”

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,  
“APEX: A Tool for Autonomous Vehicle Plan Verification and Execution”, In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016
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Can we do validated planning?

Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,  
“APEX: A Tool for Autonomous Vehicle Plan Verification and Execution”, In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016
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Matthew O'Kelly, Houssam Abbas, Sicun Gao, Shin'ichi Shiraishi, Shinpei Kato, and Rahul Mangharam ,  
“APEX: A Tool for Autonomous Vehicle Plan Verification and Execution”, In Society of Automotive Engineers (SAE) World Congress and Exhibition 2016

Can we do validated planning?
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Can a hybrid system reach a goal region of its state space? 



Can a hybrid system reach a goal region of its state space? 

Unreachable Reachable

Reachability Analysis of Hybrid Systems
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⟦H⟧

⟦goal⟧

⟦H⟧

⟦goal⟧



The standard bounded reachability problems for simple hybrid 
systems are undecidable[Alur et al, 1992].
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Can a hybrid system reach a goal region of its state space? 

Unreachable Reachable

⟦H⟧

⟦goal⟧

⟦H⟧

⟦goal⟧



The standard bounded reachability problems for simple hybrid 
systems are undecidable.

Reachability Analysis of Hybrid Systems
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1. Give up  
 
2. Don’t give Up  
 
    2.1 Find a decidable fragments and solve them  
 
    2.2 Use approximation 

“I can’t find an algorithm, 
 but neither can all these famous people.”

The standard bounded reachability problems for simple hybrid 
systems are undecidable.

Reachability Analysis of Hybrid Systems
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1. Give up  
 
2. Don’t give Up  
 
    2.1 Find a decidable fragments and solve them 
 
    2.2 Use approximation 

The standard bounded reachability problems for simple hybrid 
systems are undecidable.
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1. Give up  
 
2. Don’t give Up  
 
    A. Find a decidable fragment and solve it  
 
    2.2 Use approximation 

The standard bounded reachability problems for simple hybrid 
systems are undecidable.

Reachability Analysis of Hybrid Systems
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1. Give up  
 
2. Don’t give Up  
 
    A. Find a decidable fragment and solve it  
 
    B. Use approximation

The standard bounded reachability problems for simple hybrid 
systems are undecidable.

Reachability Analysis of Hybrid Systems
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δ-Reachability Analysis of Hybrid Systems

Given δ ∈ ℚ⁺, ⟦H⟧ and ⟦goal⟧ over-approximate ⟦H⟧ and ⟦goal⟧
δ δ

δ-reachability problem asks for one of the following answers:

Unreachable δ-reachable

30

⟦H⟧

⟦goal⟧

δ

δ

⟦H⟧

⟦goal⟧

δ

δ



δ-reachability problem asks for one of the following answers:

 - Decidable for a wide range of nonlinear hybrid systems 
      - polynomials, log, exp, trigonometric functions, …

δ-Reachability Analysis of Hybrid Systems
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Given δ ∈ ℚ⁺, ⟦H⟧ and ⟦goal⟧ over-approximate ⟦H⟧ and ⟦goal⟧
δ δ

Unreachable δ-reachable

⟦H⟧

⟦goal⟧

δ

δ

⟦H⟧

⟦goal⟧

δ

δ



δ-reachability problem asks for one of the following answers:

 - Decidable for a wide range of nonlinear hybrid systems 
 - Reasonable complexity bound (PSPACE-complete)

δ-Reachability Analysis of Hybrid Systems
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Unreachable δ-reachable

⟦H⟧

⟦goal⟧

δ

δ

⟦H⟧

⟦goal⟧

δ

δ

Given δ ∈ ℚ⁺, ⟦H⟧ and ⟦goal⟧ over-approximate ⟦H⟧ and ⟦goal⟧
δ δ



Unreachable

1.  “Unreachable” answer is sound.

δ-Reachability Analysis of Hybrid Systems
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⟦H⟧

⟦goal⟧

δ

δ



2.  Analysis is parameterized by δ

δ-reachable
Unreachable  

(analyzed with smaller δ’)

If using a delta (δ) leads to an infeasible counterexample,  
you may try a smaller delta (δ’) and possibly get rid of it.

δ-Reachability Analysis of Hybrid Systems
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⟦H⟧

⟦goal⟧

δ

δ

⟦H⟧

⟦goal⟧

δ

δ



Unreachable 
(Safe)

δ-Reachability Analysis of Hybrid Systems
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⟦H⟧

⟦Unsafe⟧

                3.  Robustness (in verification context)  
If your safe system is δ-unsafe under a reasonably small δ,  
       then it could implies that your system is not robust 



                3.  Robustness (in verification context)  
If your safe system is δ-unsafe under a reasonably small δ,  
     then it indicates that your system is not robust.

δ-reachable 
(δ-unsafe)

δ-Reachability Analysis of Hybrid Systems
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⟦H⟧

⟦Unsafe⟧

δ

δ



“δ-reachability analysis checks robustness which implies safety.”

δ-Reachability Analysis of Hybrid Systems
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δ-Rechability Analysis

Hybrid System Model 
+ Specification

(drh format)
Encoder

dReal
(δ-complete SMT solver)Logic

formula

Numerical Error

Unrolling Depth
(k)

δ-SAT

UNSAT

δ-reachable
+ Counterexample

(Visualization)

Unreachable

δ-Reachability Analysis of Hybrid Systems
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dReach: Bounded delta-reachability analysis tool for Hybrid Systems 
Encode reachability problems of hybrid systems to first-order formulas over real numbers, 
which are solved by a delta-decision procedure, dReal.



– A mode definition consists of mode id, mode invariant, flow, and jump. id is
a unique positive interger assigned to a mode. An invariant is a conjuction
of logic formulae which must always hold in a mode. A flow describes the
continuous dynamics of a mode by providing a set of ODEs. The first formula
of jump is interpreted as a guard, a logic formula specifying a condition to
make a transition. Note that this allows a transition but does not force it.
The second argument of jump, n denotes the target mode-id. The last one is
reset, a logic formula connecting the old and new values for the transition.

– initial-condition specifies the initial mode of a hybrid system and its initial
configuration. goal shares the same syntactic structure of initial-condition.

#define D 0.45
#define K 0.9
[0, 15] x;
[9.8] g;
[-18, 18] v;
[0, 3] time;

{ mode 1;
invt: (v <= 0);

(x >= 0);
flow: d/dt[x] = v;

d/dt[v] = -g - (D * v ˆ 2);
jump: (x = 0) ==> @2 (and (x’ = x) (v’ = - K * v)); }

{ mode 2;
invt: (v >= 0);

(x >= 0);
flow: d/dt[x] = v;

d/dt[v] = -g + (D * v ˆ 2);
jump: (v = 0) ==> @1 (and (x’ = x) (v’ = v)); }

init: @1 (and (x >= 5) (v = 0));
goal: @1 (and (x >= 0.45));

Fig. 3: An example of drh format: Inelastic bouncing ball with air resistance.
Lines 1 and 2 define a drag coefficientD = 0.45 and an elastic coefficientK = 0.9.
Line 3 declares variables x, g, v, and time. At lines 4 - 7 and 8 - 11, we define two
modes – the falling and the bouncing-back modes respectively. At line 12, we
specify the hybrid system to start at mode 1 (@1) with initial condition satisfying
x ≥ 5 ∧ v = 0. At line 13, it asks whether we can have a trajectory ending at
mode 1 (@1) while the height of the ball is higher than 0.45.

4.2 Command Line Options

dReach follows the standard unix command-line usage:

dReach <options> <drh file>

It has the following options:

Inelastic bouncing ball with air resistance

Input Format (drh) for Hybrid System
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Logical Encoding of Reachability Problem
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Can a system run into an unsafe region after making k steps? 
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Logical Encoding of Reachability Problem
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Logical Encoding of Reachability Problem
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Logical Encoding of Reachability Problem
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Logical Encoding of Reachability Problem
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t
k, tk) ^ Unsafe(~xk)

Can a system run into an unsafe region after making k steps? 

t
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Logical Encoding of Reachability Problem

…

~x0

~x

t
0

~x1
~x

t
1

~x2

~x

t
k�1

~xk

~x

t
k

Unsafe

Init

step 0 step 1 … step k

modeq0 modeq1 modeqk

flowq0(~x0, ~x
t
0, t0)

flowq1(~x1, ~x
t
1, t1)

flowqk(~xk, ~x
t
k, tk)

jumpq0!q1(~x
t
0, ~x1)

jumpq1!q2(~x
t
1, ~x2)

jumpqk�1!qk(~x
t
k�1, ~xk)

9~x0, ~x1, . . . , ~xk9~xt
0, ~x

t
1, . . . , ~x

t
k9t0, t1, . . . , tk

Init(~x0) ^ flowq0(~x0, ~x
t
0, t0) ^ jumpq0!q1(~x

t
0, ~x1)^

flowq1(~x1, ~x
t
1, t1) ^ jumpq1!q2(~x

t
1, ~x2)^

. . .

f lowqk(~xk, ~x
t
k, tk) ^ Unsafe(~xk)

Can a system run into an unsafe region after making k steps? 

t

46



Decision Problem

                                    

   

   

   

   

   

   

   

   

   

   

   

� := 9Ix
_

i

^

j

fi,j(x) = 0

Standard Form
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δ-Decision Problem

δ-Weakening of φ

�� := 9Ix
_

i

^

j

|fi,j(x)|  �

                                    

   

   

   

   

   

   

   

   

   

   

   

�
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- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment  

is feasible under the first order theory of Real

Solving Logic Formula

DPLL<T> Framework

dReal
(δ-complete SMT solver)Logic

formula

δ-SAT

UNSAT

Numerical Error
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Solving Logic Formula

DPLL<T> Framework

dReal 
(δ-complete SMT solver)

DPLL<T>

SAT
Solver

Theory Solver

ODE
Solver

Nonlinear
Constraint

Solver

List of Constraints

δ-SAT or UNSAT

50

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment  

is feasible under the first order theory of Real



Solving Logic Formula

DPLL<T> Framework

51

l1 := x > 4

l2 := x < 10

l3 := x

2
< 10

l4 := x

2 � 6x+ 9 = 0

l5 := cos(x) < 0.5

9x. (l1 ^ l2) =) (l3 _ l4 _ l5)

DPLL<T>

SAT
Solver

Theory Solver

ODE
Solver

Nonlinear
Constraint

Solver

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment  

is feasible under the first order theory of Real



Solving Logic Formula

DPLL<T> Framework
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l1 := x > 4

l2 := x < 10

l3 := x

2
< 10

l4 := x

2 � 6x+ 9 = 0

l5 := cos(x) < 0.5

9x. (l1 ^ l2) =) (l3 _ l4 _ l5)

DPLL<T>

SAT
Solver

Theory Solver

ODE
Solver

Nonlinear
Constraint

Solver

l₁ ∧ l₂ ∧  l₃ 

UNSAT

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment  

is feasible under the first order theory of Real



Solving Logic Formula

DPLL<T> Framework
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l1 := x > 4

l2 := x < 10

l3 := x

2
< 10

l4 := x

2 � 6x+ 9 = 0

l5 := cos(x) < 0.5

9x. (l1 ^ l2) =) (l3 _ l4 _ l5)

DPLL<T>

SAT
Solver

Theory Solver

ODE
Solver

Nonlinear
Constraint

Solver

l₁ ∧ l₂ ∧  l₃ 

UNSAT

l₁ ∧ l₂ ∧ l₄

UNSAT

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment  

is feasible under the first order theory of Real



Solving Logic Formula

DPLL<T> Framework
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l1 := x > 4

l2 := x < 10

l3 := x

2
< 10

l4 := x

2 � 6x+ 9 = 0

l5 := cos(x) < 0.5

9x. (l1 ^ l2) =) (l3 _ l4 _ l5)

DPLL<T>

SAT
Solver

Theory Solver

ODE
Solver

Nonlinear
Constraint

Solver

l₁ ∧ l₂ ∧  l₃ 

UNSAT

l₁ ∧ l₂ ∧ l₄

UNSAT

l₁ ∧ l₂ ∧ l₅

δ-SAT

- SAT solver finds a satisfying Boolean assignment
- Theory solver checks whether the assignment  

is feasible under the first order theory of Real



Main Algorithm of Theory Solver:  
ICP(Interval Constraint Propagation)

Theory Solver

ODE
Solver

Nonlinear
Constraint

Solver

List of Constraints

δ-SAT or UNSAT

55



Main Algorithm of Theory Solver:  
ICP(Interval Constraint Propagation)

Pruning Branch
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Main Algorithm of Theory Solver:  
ICP(Interval Constraint Propagation)

Pruning

57

Contracting interval domains associated to variables of Real  
without removing any value that is consistent with a set of constraints



Main Algorithm of Theory Solver:  
ICP(Interval Constraint Propagation)

Pruning

f(B) ✓ B

x 2 B ^ x 2 Sol(f) =) x 2 f(B)

Monotone

Solution-Preserving

B1 ✓ B2 =) f(B1) ✓ f(B2)

Reductive
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(Termination)

(Soundness)

(Termination)



δ-sat Unsat

Two Termination Conditions of ICP

ε
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations
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Example of Pruning Operations

75



Example of Pruning Operations

Unsat
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Example of ICP
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Example of ICP
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Example of ICP
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Pruning Applied



Example of ICP
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After steps, pruning reaches a fixed point.



Example of ICP
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Branching on X



Example of ICP

82

Apply Pruning on the Left-hand Box



Example of ICP
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After pruning steps, 
it shows that left-hand box contains NO solution.



Example of ICP
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Apply Pruning on the Right-hand Box



Example of ICP
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Apply Pruning on the Right-hand Box



Example of ICP

86

Branching on X



Example of ICP
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Apply Pruning on the Right-hand Box



Example of ICP
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Example of ICP
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Example of ICP
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Example of ICP
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Example of ICP
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Example of ICP
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Example of ICP
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Example of ICP

95

Found a small enough Box (width <= 0.001)
Answer: delta-SAT



Main Algorithm of ICP
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Pruning

Branching



Pruning using ODEs
 

97

Xt = X0 +

Z T

0
flow(x(s))ds



pruning on Xt

Pruning using ODEs
(Forward)

t

Xt
X0

T

How can we prune      ?
98

Xt = X0 +

Z T

0
flow(x(s))ds

Xt



t

Xt
X0

T�t �t �t

Pruning using ODEs
(Forward)
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Xt = X0 +

Z T

0
flow(x(s))ds

(numerically) Compute the enclosures of the solutions of ODE



t

Xt
X0

T

Pruning using ODEs
(Forward)
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Xt = X0 +

Z T

0
flow(x(s))ds

Enclosures of Solutions of ODEs

(numerically) Compute the enclosures of the solutions of ODE



t

Xt
X 0

tX0

T

Pruning using ODEs
(Forward)
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Xt = X0 +

Z T

0
flow(x(s))ds

Enclosures of Solutions of ODEs

Take the intersection between the Enclosure and Xt



t

T

Xt

X0

X 0
0

Pruning on X0

Pruning using ODEs
(Backward)
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Enclosures of Solutions of ODEs



t

Xt

X0

T

Pruning using ODEs
(on Time)

Pruning on T
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Xt = X0 +

Z T

0
flow(x(s))ds

TuTl



t

Xt

X0

T

Pruning using ODEs
(on Time)

Pruning on T
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Xt = X0 +

Z T

0
flow(x(s))ds

Enclosures of Solutions of ODEs

TuTl



t

Xt

X0

T

T 0

Pruning using ODEs
(on Time)

Pruning on T
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Enclosures of Solutions of ODEs

Xt = X0 +

Z T

0
flow(x(s))ds

TuTl T 0
u
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Invariant

t

Xt

X 0
t

T

X0

Pruning with Mode Invariant

Pruning using ODEs
(using Invariant)



dReach: δ-Reachability Analysis of Hybrid Systems

dReach

Hybrid System Model 
+ Specification

(drh format)
BMC

Encoder

dReal 
(δ-complete SMT solver)

SMT2
formula

Numerical Error (δ)

Unrolling Depth
(k)

δ-SAT

UNSAT

δ-reachable
+ Counterexample

(Visualization)

Unreachable

DPLL<T>

SAT
Solver

ICP Solver

ODE
Solver

Nonlinear
Constraint

Solver

- Open Source, available at https://dreal.github.io
- Support polynomials, transcendental functions and nonlinear ODEs
- Formulas with 100+ ODEs have been solved.
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https://dreal.github.io


dReach

Hybrid System Model 
+ Specification

(drh format)
BMC

Encoder

dReal 
(δ-complete SMT solver)

SMT2
formula

Numerical Error (δ)

Unrolling Depth
(k)

δ-SAT

UNSAT

δ-reachable
+ Counterexample

(Visualization)

Unreachable

DPLL<T>

SAT
Solver

ICP Solver

ODE
Solver

Nonlinear
Constraint

Solver
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Visualization of Counterexample



Visualization of Counterexample
ODE Visualization with dReach

0 5 10 15 20 25 30 35

Click and drag above to zoom / pan the data

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3
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3-mode Oscillator Model
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Applications

* Cardiac Cells, Prostate Cancer (CMU, GIT, TU Vienna)

* Prostate Cancer (CMU, UPITT)

* Power-train Control, Validated Planning (Toyota Research Labs)  

* Microfluidic Chip Designs (Univ. of Waterloo)

* Analog Circuits (City University London)

* Quadcopter Control, Autonomous Driving (CMU)

* FDA-accepted non-linear hybrid physiological model for diabetes, (UPENN)
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Tools based on dReal/dReach

* APEX: A Tool for Autonomous Vehicle Plan Verification and Execution (Toyota)  

* ProbReach: Probabilistic reachability analysis of hybrid systems (Univ. of Newcastle)

* BioPSy: Parameter set synthesis on biological models (Univ. of Newcastle)

* SReach: Bounded model checker for stochastic hybrid systems (CMU)

* Osmosis: Semantic importance sampling for statistical model checking (CMU SEI)

* Sigma: Probabilistic programming language (MIT)
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Conclusion

* δ-reachability analysis checks robustness of hybrid systems 

which implies safety.

* Decidable (PSPACE-Complete) 

* Use dReal, δ-SMT solver supporting nonlinear functions/ODEs

* Based on DPLL⟨ICP⟩ framework

* Open-source: available at http://dreal.github.io
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Future Work

* Scalability

* Learning & Non-chronological Backtracking in ICP

* Parallelization

* Expressiveness

* Support Exist-Forall formulas (for optimization problems)

* Support PDEs (Partial Differential Equations)

* Generating Certificate for UNSAT cases

* Already have a prototype independent type-checker

* Plan to generate Lean/Coq proofs
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Any Questions?
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FAQs
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Q1. How to pick ε from a given δ∈ ℚ⁺ in ICP Algorithm?

8~x, ~y 2 B, ||x� y|| < ✏i =) |fi(~x)� fi(~y)| < �

✏ = min(✏1, . . . , ✏n)

A1:

 - For all fᵢ, find εᵢ such that

 - Fix ε be the minimum of εᵢs



FAQs
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Q2. Lipschitz continuity?

A2:  A Lipschitz continuous function is limited in how fast it 
can change: there exists a definite real number K such that, 
for every pair of points on the graph of this function, the 
absolute value of the slope of the line connecting them is 
not greater than this real number; this bound is called a 
"Lipschitz constant" of the function (or "modulus of 
uniform continuity").

dY (f(x1), f(x2))

dX(x1, x2)
 K.


