Compositional Sequentialization of Periodic Programs*

Soonho Kong soonhok@cs.cmu.edu Carnegie Mellon University

*Work with Sagar Chaki(SEI/CMU), Arie Gurfinkel(SEI/CMU), and Ofer Strichman(Technion - Israel Institute of Technology)

Target of Verification: Periodic Programs

Task
$$\tau = (I, T, P, C, A)$$

$$\overbrace{\text{Task } \tau = (I,T,P,C,A)}^{\text{Priority}}$$

$$\overbrace{\text{TaskBody}}^{\text{TaskBody}} \mathsf{Task} \ \tau = (I, T, P, C, A)$$


```
TASK(Controller)
  int old_state = state;
  if(R(need_to_run_nxtbg)) {
    bg_nxtcolorsensor(true);
    W(need_to_run_nxtbg, false);
  }
  switch (TM_mode) {
  case TM_CALIBRATE:
   W(threshold, calibrate());
    if(R(threshold) > 0) \{
      TM_mode = TM_INIT;
    break;
  case TM_INIT:
    /* initialize internal variable */
    init();
    TM_mode = TM_HALT;
    break;
  case TM_OPERATION:
    switch(C_state) {
    case C_READ:
      if(R(need_to_read)) {
        if(nxt_motor_get_count(READ_MOTOR) < READ_REV && R(R_state) == RE
W(R_state, READ_MOVE_HEADER_FORWARD);
        } else if(nxt_motor_get_count(READ_MOTOR) >= READ_REV && R(R_stat
          W(R_state, READ_SENSOR);
      } else {
        W(R_state, READ_IDLE);
        C_state = C_TRANS;
      break;
    case C_TRANS:
      old_state = state;
      if(transition(state, R(input))) {
        TM_mode = TM_HALT;
      } else {
        C_state = C_WRITE;
      break;
    case C_WRITE:
      /* Check if we need to chagne the bit */
      if(R(input) != R(output)) {
```

/* Check the header and move it back if necessary */

Case Study: Concurrent Turing Machine

Controller Task Priority: I (Lowest) Period 500ms | WCET: 440ms

I. Calibrate Sensor 2. Command other tasks

1010

Writer Task Priority: 4 Period 25ms | WCET: < 1ms Flip bits

> Reader Task Priority: 3 Period 50ms | WCET: < 1ms Read bits using NXT-colorsensor

TapeMover Task Priority: 2 Period 100ms | WCET: < 1ms Move the tape (left or right)

1001

Isn't LEGO Mindstorms just a TOY?

No, it runs OSEK/VDX-compatible RTOS.

Open Systems and their Interfaces for the Electronics in Motor Vehicles a standard software architecture for the various electronic control units (ECUs) throughout a car

DEMO

Unary Addition 2 + 3 = ?

http://www.youtube.com/watch?v=teDyd0d5M4o

Property I: When a bit is being read, all the motors should **stop**.

Property I: When a bit is being read, all the motors should **stop**.

Property 2: When writer flips a bit, the tape motor and read motor should **stop**.

Property I: When a bit is being read, all the motors should **stop**.

Property 2: When writer flips a bit, the tape motor and read motor should **stop**.

Property 3: When tape moves, the writer motor and read motor should **stop**.

Property I: When a bit is being read, all the motors should **stop**.

Property 2: When writer flips a bit, the tape motor and read motor should **stop**.

Property 3: When tape moves, the writer motor and read motor should **stop**.

Property 4: When a bit is being read, the sensor should be on Green mode

Property I: When a bit is being read, all the motors should **stop**.

Property 2: When writer flips a bit, the tape motor and read motor should **stop**.

Property 3: When tape moves, the writer motor and read motor should **stop**.

Property 4: When a bit is being read, the sensor should be on Green mode

Property 5: The sensor mode must be switched in **Controller Task**, not in Reader Task

```
case READ_SENSOR:
    if(ecrobot_get_nxtcolorsensor_mode(COLOR_SENSOR) != NXT_LIGHTSENSOR_GREEN) {
      ecrobot_set_nxtcolorsensor(COLOR_SENSOR, NXT_LIGHTSENSOR_GREEN);
      W(need_to_run_nxtbg, true);
    if(!R(need_to_run_nxtbg)) {
     /* Turn the sensor on */
#ifdef VERIFICATION
      /* Property 1: When a bit is being read,
         all the motors should be stopped. */
     /* PASSED with 80*/
      assert(R(R_speed) == 0 \&\& R(W_speed) == 0 \&\& R(T_speed) == 0);
      /* Property 4: When a bit is being read,
         the sensor should be on Green mode */
      assert(ecrobot_get_nxtcolorsensor_mode(COLOR_SENSOR) == NXT_LIGHTSENSOR_GREEN);
#endif
      ecrobot_set_nxtcolorsensor(COLOR_SENSOR, NXT_LIGHTSENSOR_GREEN);
      /* Read Sensor Value */
```

```
bg_nxtcolorsensor(false);
color = ecrobot_get_nxtcolorsensor_light(COLOR_SENSOR);
```

Key Idea: Sequentialization

Time-bounded Verification of Periodic Programs via Sequentialization

Naive Approach:

- I. Enumerate all possible (sequentialized) executions
- 2. Verify each of them

Our Approach (MonoSeq):

- I. Construct a **non-deterministic** sequentialized program
- 2. Enforce legal job scheduling and prune out infeasible thread executions by adding **constraints**

MONOSEQ Sequentialization

Because we are interested in logical properties, We abstract the absolute time with relative order of execution

Because we are interested in logical properties, We abstract the absolute time with relative order of execution

Because we are interested in logical properties, We abstract the absolute time with relative order of execution

Any execution can be partitioned into scheduling rounds

Observation: Any execution can be partitioned into scheduling rounds

Observation: Any execution can be partitioned into scheduling rounds

Any execution can be partitioned into scheduling rounds

of Jobs = # of Rounds

I. Jobs are sequential:

I. Jobs are sequential:

 $\operatorname{MonoSeq}\ Sequentialization$

2. Jobs are well-nested:

2. Jobs are well-nested:

2. Jobs are well-nested:

2. Jobs are well-nested:

2. Jobs are well-nested:

2. Jobs are well-nested:

2. Jobs are well-nested:

2. Jobs are well-nested:

2. Jobs are well-nested:

2. Jobs are well-nested:

 $\begin{array}{l} \textit{ // Jobs are well-nested} \\ \forall t_1 \in \mathsf{T}, t_2 \in \mathsf{T}, j_1 \in \mathsf{J}(t_1), j_2 \in \mathsf{J}(t_2) \\ \text{assume}(\\ (t_1 < t_2 \land \\ start[t_1][j_1] \leq end[t_2][j_2] \land \\ start[t_2][j_2] \leq end[t_1][j_1]) \Rightarrow \\ (start[t_2][j_1] \leq start[t_2][j_2] \leq end[t_2][j_2] < end[t_1][j_1])) \end{array}$

$\operatorname{MonoSeq}\ Sequentialization$

3. Jobs respect preemption bounds:

 $PB_{t_1}^{t_2}$ = Upper bound on the number of times t_1 can preempt t_2 .

3. Jobs respect preemption bounds:

RMA(Rate Monotonic Analysis) defines it

> $PB_{t_1}^{t_2}$ = Upper bound on the number of times t_1 can preempt t_2 .
Add constraints to enforce **legal** job scheduling

3. Jobs respect preemption bounds:

 $PB_{t_1}^{t_2}$ = Upper bound on the number of times t_1 can preempt t_2 .

Add constraints to enforce **legal** job scheduling

3. Jobs respect preemption bounds:

 $PB_{t_1}^{t_2}$ = Upper bound on the number of times t_1 can preempt t_2 .

Add constraints to enforce **legal** job scheduling

3. Jobs respect preemption bounds:

Replace accesses to global variable g with g[rnd]

Replace accesses to global variable g with g[rnd]

Replace accesses to global variable g with g[rnd]

Replace accesses to global variable g with g[rnd]

Replace accesses to global variable g with g[rnd]

Add non-deterministic **context-switching** to statements

Add non-deterministic **context-switching** to statements

Guess non-deterministic initial value of each global in each round.

Guess non-deterministic initial value of each global in each round.

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task

${\rm MonoSeq} \ Sequentialization$

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task g[3] g[4] g[1] g[5] g[0] g[2] g[3] g[6]

5

${\rm MONOSEQ} \ Sequentialization$

3

3

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to respect the order of execution

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to respect the order of execution

MONOSEQ Sequentialization

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to respect the order of execution

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to respect the order of execution

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to respect the order of execution

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to respect the order of execution

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to respect the order of execution

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to respect the order of execution

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to respect the order of execution

Save assertions and check them at the end of execution.

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task Constraint the value of global variables g[]s to exclude infeasible execution Save assertions and check them at the end of execution.

${\rm MonoSeq} \ Sequentialization$

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task Constraint the value of global variables g[]s to exclude infeasible execution Save assertions and check them at the end of execution.

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task Constraint the value of global variables g[]s to exclude infeasible execution Save assertions and check them at the end of execution.

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task Constraint the value of global variables g[]s to exclude infeasible execution Save assertions and check them at the end of execution.

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to exclude infeasible execution

Save assertions and check them at the end of execution.

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to exclude infeasible execution

Save assertions and check them at the end of execution.

${\rm MONOSEQ} \ Sequentialization$

Guess non-deterministic initial value of each global in each round. Execute Task Body, from lower priority task to higher priority task Constraint the value of global variables g[]s to exclude infeasible execution Save assertions and check them at the end of execution.

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to exclude infeasible execution

Save assertions and check them at the end of execution.

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to exclude infeasible execution

Save assertions and check them at the end of execution.

Guess non-deterministic initial value of each global in each round.

Execute Task Body, from lower priority task to higher priority task

Constraint the value of global variables g[]s to exclude infeasible execution

Save assertions and check them at the end of execution.

${\rm MONOSEQ} \ Sequentialization$

MONOSEQ

Algorithm 1 A sequential program S for a periodic program C bounded by time W. Notation: T is the set of tasks of C; G is the set of global variables of C; J(t) is the set of jobs of task t; $R = \sum_{t \in T, j \in Job(t)} |J(t)|$ is the number of rounds, last(t, j)is true iff j is the last job of $t \in T$; for $t_i, t_j \in T$, $t_i < t_j$ is true iff t_i is of lower priority than t_j ; '*' is a non-deterministic value.

1: **var** *rnd*, *job*, *endRnd*, *start*[][], *end*[][] 23: function SCHEDULEJOBS() 2: $\forall g \in \mathbf{G} \cdot \mathbf{var} \ g[], v_{g}[]$ 3: var localAssert[][] 4: function MAIN() SCHEDULEJOBS() 5: 24: $\forall t \in \mathsf{T}, j \in \mathsf{J}(t) \cdot \mathit{localAssert}[t][j] := \mathsf{TRUE}$ 6: $\forall q \in \mathbf{G} \cdot q[0] := i_a$ 7: $\forall g \in \mathbf{G} \forall r \in [1, R) \cdot g[r] := v_q[r]$ 8: for $t \in \mathsf{T}$, $job \in \mathsf{J}(t)$ do 9: rnd := start[t][job]10: endRnd := end[t][job]11: $\hat{T}_t()$ 12: 25: $\operatorname{assume}(rnd = endRnd)$ 13: $\forall g \in \mathbf{G}, r \in [0, R-1) \cdot$ 14: assume $(g[r] = v_q[r+1])$ $\forall t \in \mathsf{T}, j \in \mathsf{J}(t) \cdot \operatorname{assert}(localAssert[t][j])$ 15: 16: **function** CS(Task t)if (*) then return FALSE 17: 26: o := rnd18: rnd := *19: assume(o < rnd < endRnd)20: $\forall t' \in \mathsf{T}, j' \in \mathsf{J}(t')$. assume(21: $t < t' \Rightarrow$ $(rnd \leq start[t'][j'] \lor rnd > end[t'][j']))$ 22: return TRUE

II Jobs are sequential $\forall t \in \mathsf{T}, j \in \mathsf{J}(t)$. assume($0 < start[t][j] < end[t][j] < R \land$ $(\neg \text{last}(t, j) \Rightarrow end[t][j] < start[t][j+1]))$

|| Jobs are well-nested

 $\forall t_1 \in \mathsf{T}, t_2 \in \mathsf{T}, j_1 \in \mathsf{J}(t_1), j_2 \in \mathsf{J}(t_2) \cdot$ assume($\begin{array}{l} \left(t_1 < t_2 \land \\ start[t_1][j_1] \le end[t_2][j_2] \land \end{array} \right)$ $start[t_2][j_2] < end[t_1][j_1]) \Rightarrow$ $(start[t_1][j_1] \le start[t_2][j_2] \le end[t_2][j_2] < end[t_1][j_1]))$

II Jobs respect preemption bounds

 $\forall t_1 \in \mathsf{T}, t_2 \in \mathsf{T}, j_1 \in \mathsf{J}(t_1), j_2 \in \mathsf{J}(t_2)$. assume($(t_1 < t_2 \land j_2 \ge PB_{t_1}^{t_2} \land$ $start[t_1][j_1] \leq start[t_2][j_2] \leq end[t_2][j_2] < end[t_1][j_1]) \Rightarrow$ $end[t_2][j_2 - PB_{t_1}^{t_2}] < start[t_1][j_1])$

27: function $\hat{T}_t()$ Same as T_t , but each statement 'st' is replaced with: CS(t); $st[g \leftarrow g[rnd]]$, 28: and each 'assert(e)' is replaced with: localAssert[t][job] := e29:

MonoSeq

Algorithm 1 A sequential program S for a periodic program C bounded by time W. Notation: T is the set of tasks of C; G is the set of global variables of C; J(t) is the set of jobs of task t; $R = \sum_{t \in T, j \in Job(t)} |J(t)|$ is the number of rounds, last(t, j) is true iff j is the last job of $t \in T$; for $t_i, t_j \in T$, $t_i < t_j$ is true iff t_i is of lower priority than t_j ; '*' is a non-deterministic value.

1: **var** *rnd*, *job*, *endRnd*, *start*[][], *end*[][] 23: function SCHEDULEJOBS() 2: $\forall g \in \mathbf{G} \cdot \mathbf{var} \ g[], v_{g}[]$ 3: **var** *localAssert*[][] *II Jobs are sequential* 4: function MAIN() $\forall t \in \mathsf{T}, j \in \mathsf{J}(t)$. SCHEDULEJOBS() assume(24: $\forall t \in \mathsf{T}, j \in \mathsf{J}(t) \cdot \mathit{localAssert}[t][j] := \mathsf{TRUE}$ $0 \leq start[t][j] \leq end[t][j] \leq R \wedge$ 6: $\forall q \in \mathbf{G} \cdot q[0] := i_a$ $(\neg \text{last}(t, j) \Rightarrow end[t][j] < start[t][j+1]))$ 7: $\forall g \in \mathbf{G} \forall r \in [1, R) \cdot g[r] := v_g[r]$ 8: // Jobs are well-nested for $t \in \mathsf{T}$, $job \in \mathsf{J}(t)$ do 9: $\forall t_1 \in \mathsf{T}, t_2 \in \mathsf{T}, j_1 \in \mathsf{J}(t_1), j_2 \in \mathsf{J}(t_2) \cdot$ rnd := start[t][job]10: assume(endRnd := end[t][job]11: $\begin{pmatrix} t_1 < t_2 \land \\ start[t_1][j_1] \le end[t_2][j_2] \land$ $\hat{T}_t()$ 12: 25: $\operatorname{assume}(rnd = endRnd)$ 13: $start[t_2][j_2] \leq end[t_1][j_1]) \Rightarrow$ $\forall g \in \mathbf{G}, r \in [0, R-1) \cdot$ 14: $(start[t_1][j_1] \le start[t_2][j_2] \le end[t_2][j_2] < end[t_1][j_1]))$ assume $(g[r] = v_q[r+1])$ $\forall t \in \mathsf{T}, j \in \mathsf{J}(t) \cdot \operatorname{assert}(localAssert[t][j])$ 15: *II Jobs respect preemption bounds* $\forall t_1 \in \mathsf{T}, t_2 \in \mathsf{T}, j_1 \in \mathsf{J}(t_1), j_2 \in \mathsf{J}(t_2)$. 16: **function** CS(Task t)assume(if (*) then return FALSE 17: $(t_1 < t_2 \land j_2 \ge PB_{t_1}^{t_2} \land$ 26: o := rnd18: $start[t_1][j_1] \leq start[t_2][j_2] \leq end[t_2][j_2] < end[t_1][j_1]) \Rightarrow$ rnd := *19: $end[t_2][j_2 - PB_{t_1}^{t_2}] < start[t_1][j_1])$ assume(o < rnd < endRnd)20: $\forall t' \in \mathsf{T}, j' \in \mathsf{J}(t')$. 27: function $\hat{T}_t()$ assume(Same as T_t , but 21: $t < t' \Rightarrow$ each statement 'st' is replaced with: $(rnd < start[t'][j'] \lor rnd > end[t'][j']))$ CS(t); $st[g \leftarrow g[rnd]]$, 28: 22: return TRUE and each 'assert(e)' is replaced with: localAssert[t][job] := e29:

MonoSeq

Algorithm 1 A sequential program S for a periodic program C bounded by time W. Notation: T is the set of tasks of C; G is the set of global variables of C; J(t) is the set of jobs of task t; $R = \sum_{t \in T, j \in Job(t)} |J(t)|$ is the number of rounds, last(t, j) is true iff j is the last job of $t \in T$; for $t_i, t_j \in T$, $t_i < t_j$ is true iff t_i is of lower priority than t_j ; '*' is a non-deterministic value.

1: **var** *rnd*, *job*, *endRnd*, *start*[][], *end*[][] 23: function SCHEDULEJOBS() 2: $\forall g \in \mathbf{G} \cdot \mathbf{var} \ g[], v_{g}[]$ 3: **var** *localAssert*[][] *II Jobs are sequential* 4: function MAIN() $\forall t \in \mathsf{T}, j \in \mathsf{J}(t)$. SCHEDULEJOBS() 5: assume(24: $\forall t \in \mathsf{T}, j \in \mathsf{J}(t) \cdot \mathit{localAssert}[t][j] := \mathsf{TRUE}$ $0 < start[t][j] < end[t][j] < R \land$ 6: $\forall q \in \mathbf{G} \cdot q[0] := i_a$ $(\neg \text{last}(t, j) \Rightarrow end[t][j] < start[t][j+1]))$ 7: $\forall g \in \mathbf{G} \forall r \in [1, R) \cdot g[r] := v_q[r]$ 8: *|| Jobs are well-nested* for $t \in \mathsf{T}$, $job \in \mathsf{J}(t)$ do 9: $\forall t_1 \in \mathsf{T}, t_2 \in \mathsf{T}, j_1 \in \mathsf{J}(t_1), j_2 \in \mathsf{J}(t_2) \cdot$ rnd := start[t][job]10: assume(endRnd := end[t][job]11: $\begin{pmatrix} t_1 < t_2 \land \\ start[t_1][j_1] \le end[t_2][j_2] \land$ $\hat{T}_t()$ 12: 25: $\operatorname{assume}(rnd = endRnd)$ 13: $start[t_2][j_2] < end[t_1][j_1]) \Rightarrow$ $\forall g \in \mathbf{G}, r \in [0, R-1) \cdot$ 14: $(start[t_1][j_1] \le start[t_2][j_2] \le end[t_2][j_2] < end[t_1][j_1]))$ assume $(g[r] = v_q[r+1])$ $\forall t \in \mathsf{T}, j \in \mathsf{J}(t) \cdot \operatorname{assert}(localAssert[t][j])$ 15: *II Jobs respect preemption bounds* $\forall t_1 \in \mathsf{T}, t_2 \in \mathsf{T}, j_1 \in \mathsf{J}(t_1), j_2 \in \mathsf{J}(t_2)$. 16: **function** CS(Task t)assume(if (*) then return FALSE 17: $(t_1 < t_2 \land j_2 \ge PB_{t_1}^{t_2} \land$ 26: o := rnd18: $start[t_1][j_1] \leq start[t_2][j_2] \leq end[t_2][j_2] < end[t_1][j_1]) \Rightarrow$ rnd := *19: $end[t_2][j_2 - PB_{t_1}^{t_2}] < start[t_1][j_1])$ assume(o < rnd < endRnd)20: $\forall t' \in \mathsf{T}, j' \in \mathsf{J}(t')$. 27: function $\hat{T}_t()$ assume(Same as T_t , but 21: $t < t' \Rightarrow$ each statement 'st' is replaced with: $(rnd \leq start[t'][j'] \lor rnd > end[t'][j']))$ CS(t); $st[q \leftarrow q[rnd]]$, 28: 22: return TRUE and each 'assert(e)' is replaced with: localAssert[t][job] := e29:

MonoSeq

Algorithm 1 A sequential program S for a periodic program C bounded by time W. Notation: T is the set of tasks of C; G is the set of global variables of C; J(t) is the set of jobs of task t; $R = \sum_{t \in T, j \in Job(t)} |J(t)|$ is the number of rounds, last(t, j) is true iff j is the last job of $t \in T$; for $t_i, t_j \in T$, $t_i < t_j$ is true iff t_i is of lower priority than t_j ; '*' is a non-deterministic value.

24:

25:

1: **var** *rnd*, *job*, *endRnd*, *start*[][], *end*[][] 2: $\forall g \in \mathbf{G} \cdot \mathbf{var} \ g[], v_{g}[]$ 3: var localAssert[][] 4: function MAIN() SCHEDULEJOBS() 5: $\forall t \in \mathsf{T}, j \in \mathsf{J}(t) \cdot \mathit{localAssert}[t][j] := \mathsf{TRUE}$ 6: $\forall q \in \mathbf{G} \cdot q[0] := i_a$ 7: $\forall g \in \mathbf{G} \forall r \in [1, R) \cdot g[r] := v_q[r]$ 8: for $t \in \mathsf{T}$, $job \in \mathsf{J}(t)$ do 9: rnd := start[t][job]10: endRnd := end[t][job]11: $\hat{T}_t()$ 12: $\operatorname{assume}(rnd = endRnd)$ 13: $\forall g \in \mathbf{G}, r \in [0, R-1) \cdot$ 14: assume $(g[r] = v_q[r+1])$ $\forall t \in \mathsf{T}, j \in \mathsf{J}(t) \cdot \operatorname{assert}(localAssert[t][j])$ 15: 16: **function** CS(Task t)if (*) then return FALSE 17: o := rnd18: rnd := *19: assume(o < rnd < endRnd)20: $\forall t' \in \mathsf{T}, j' \in \mathsf{J}(t')$. assume(21: $t < t' \Rightarrow$ $(rnd \leq start[t'][j'] \lor rnd > end[t'][j']))$ 22: return TRUE

 $\begin{array}{l} \textit{ // Jobs are sequential} \\ \forall t \in \mathsf{T}, j \in \mathsf{J}(t) \\ \text{assume}(\\ 0 \leq start[t][j] \leq end[t][j] \leq R \\ (\neg \mathsf{last}(t, j) \Rightarrow end[t][j] \leq start[t][j+1])) \end{array}$

```
// Jobs are well-nested
```

23: function SCHEDULEJOBS()

 $\begin{aligned} \forall t_1 \in \mathsf{T}, t_2 \in \mathsf{T}, j_1 \in \mathsf{J}(t_1), j_2 \in \mathsf{J}(t_2) \\ \text{assume}(\\ & \left(t_1 < t_2 \land \\ & start[t_1][j_1] \leq end[t_2][j_2] \land \\ & start[t_2][j_2] \leq end[t_1][j_1] \right) \Rightarrow \\ & (start[t_1][j_1] \leq start[t_2][j_2] \leq end[t_2][j_2] < end[t_1][j_1])) \end{aligned}$

// Jobs respect preemption bounds

 $\forall t_{1} \in \mathsf{T}, t_{2} \in \mathsf{T}, j_{1} \in \mathsf{J}(t_{1}), j_{2} \in \mathsf{J}(t_{2}) \cdot \\ \text{assume}($ 26: $(t_{1} < t_{2} \land j_{2} \ge PB_{t_{1}}^{t_{2}} \land \\ start[t_{1}][j_{1}] \le start[t_{2}][j_{2}] \le end[t_{2}][j_{2}] < end[t_{1}][j_{1}]) \Rightarrow \\ end[t_{2}][j_{2} - PB_{t_{1}}^{t_{2}}] < start[t_{1}][j_{1}])$

27: **function** $\hat{T}_t()$ Same as T_t , but each statement 'st' is replaced with: 28: CS(t); $st[g \leftarrow g[rnd]]$, and each 'assert(e)' is replaced with: 29: localAssert[t][job] := e

We executed jobs in the order of their priorities.

Order jobs by \Box relation

$$j_1 \sqsubset j_2$$

We executed jobs in the order of their priorities.

5

CompSeq

Algorithm 1 The sequentialization S of the time-bounded periodic program $C_{\mathcal{H}}$. Notation: J is the set of all jobs; G is the set of global variables of C; i_g is the initial value of g according to C; '*' is a non-deterministic value.

1:	<pre>var rnd, start[], end[], localAssert[]</pre>	16:	function RUNJOB(Job j)
2:	$\forall g \in G.var g[], v_g[]$	17:	localAssert[j] := 1
		18:	rnd := start[j]
3:	function MAIN()	19:	$\hat{T}(j)$
4:	$orall g \in G$. $g[0] := i_g$	20:	$\operatorname{assume}(rnd = end[j])$
5:	HYPERPERIOD()	21:	if $rnd < R-1$ then
		<u> </u>	$\forall g \in G$. assume
6:	function HyperPeriod()	22.	$(g[rnd] = v_g[rnd+1])$
7:	SCHEDULEJOBS()	<u>າ</u> 2.	$X := \{j' \mid (j' = j \lor j' \uparrow j) \land$
-	$\forall q \in G$. $\forall r \in [1, R)$.	<i>2</i> 3.	$(\forall j'' \neq j \cdot j' \uparrow j'' \Rightarrow j'' \sqsubset j) \}$
8:	$v_{a}[r] := *: a[r] := v_{a}[r]$	24:	$\forall j' \in X$. assert $(localAssert[j'])$
	let the ordering of jobs by \sqsubset be		
	$j_0 \sqsubset j_1 \sqsubset \dots j_{R-1}$	25:	function $\hat{T}(\text{Job } j)$
9:	$\operatorname{RUNJOB}(j_0); \ldots; \operatorname{RUNJOB}(j_{R-1})$		Obtained from T_t by replacing
			each statement 'st' with:
10.	function SCHEDULE. JOBS()	26:	$CS(j); st[q \leftarrow q[rnd]]$
10.			and each 'assert(e)' with:
11:	$\forall j \in J$. $start[j] = *; end[j] = *$	27:	localAssert[j] := e
	// Jobs are sequential		[0]]
12.	$\forall i \in [0,N)$. $\forall k \in [0,J_i)$. assume	<u>98</u> .	function $CS(Iob i)$
12.	$(0 \le start[J(i,k)] \le end[J(i,k)] < R)$	20. 20.	if $(*)$ then return FALSE
	// Jobs are well-separated	20.	
13:	$\forall j_1 \lhd j_2$. assume $(end[j_1] < start[j_2])$	3U:	o := rna ; rna := *
14:	$\forall j_1 \uparrow j_2$. assume $(start[j_1] \leq start[j_2])$	31:	$\operatorname{assume}(o < rnd \leq end[j])$
	// Jobs are well-nested	22	$\forall j^* \in J \cdot j \uparrow j^* \Longrightarrow$
15.	$\forall j_1 \uparrow j_2$. assume $(start[j_2] \leq end[j_1]$	32:	$\operatorname{assume}(rnd \leq start[j'])$
тд.	$\implies (start[j_2] \le end[j_2] < end[j_1]))$	กก	rnd > end[j'])
		33:	return TRUE

CompSeq

Algorithm 1 The sequentialization \mathcal{S} of the time-bounded periodic program $\mathcal{C}_{\mathcal{H}}$. Notation: J is the set of all jobs; G is the set of global variables of \mathcal{C} ; i_g is the initial value of g according to C; '*' is a non-deterministic value. _____

1: var rnd, start[], end[], localAssert[]	16: function RUNJOB(Job j)
2: $\forall g \in G.var[], v_g[]$	17: $localAssert[j] := 1$
	18: $rnd := start[j]$
3: function MAIN()	19: $\hat{T}(j)$
4: $\forall g \in G g[0] := i_g$	20: $\operatorname{assume}(rnd = end[j])$
5: HYPERPERIOD()	21: if $rnd < R - 1$ then
	$\forall g \in G$. assume
6: function HyperPeriod()	$(g[rnd] = v_g[rnd+1])$
7: SCHEDULEJOBS()	$X := \{j' \mid (j' = j \lor j' \uparrow j) \land$
$\forall q \in G$. $\forall r \in [1, R)$.	$(\forall j'' \neq j \cdot j' \uparrow j'' \Rightarrow j'' \sqsubset j)\}$
8: $v_a[r] := *; q[r] := v_a[r]$	24: $\forall j' \in X$. assert $(localAssert[j'])$
let the ordering of jobs by \sqsubset be	
$j_0 \sqsubset j_1 \sqsubset \dots j_{R-1}$	25: function $\hat{T}(\text{Job } i)$
9: RUNJOB $(j_0); \ldots;$ RUNJOB (j_{R-1})	Obtained from T_t by replacing
	each statement 'st' with:
10: function SCHEDULE.JOBS()	26: $\operatorname{CS}(j)$; $st[q \leftarrow q[rnd]]$
	and each 'assert(e)' with:
11: $\forall j \in J$. $start[j] = *; end[j] = *$	27: $localAssert[j] := e$
// Jobs are sequential	
12: $\forall i \in [0, N)$. $\forall k \in [0, J_i)$. assume	28: function $CS(Job i)$
$(0 \le start[J(i,k)] \le end[J(i,k)] <$	< R) 29: if (*) then return FALSE
// Jobs are well-separated	
13: $\forall j_1 \triangleleft j_2$. assume $(end[j_1] < start[$	$j_2]) 30: \qquad o := rna; rna := *$
14: $\forall j_1 \uparrow j_2$. assume $(start[j_1] \leq start$	$\forall [j_2])$ 51: assume $(o < rna \le ena[j])$
// Jobs are well-nested	$\forall j \in J \cdot j \mid j \Longrightarrow$
15: $\forall j_1 \uparrow j_2$ assume $(start[j_2] \leq end[j_2]$	j_1 J_2 : assume $(rna \leq start[j])$
\implies $(start[j_2] \le end[j_2] < end[j_2]$	$(j_1])) \xrightarrow{rna > ena[j])}$
	JJ. ICUIII IKUE

$\operatorname{COMPSEQ}$

Algorithm 1 The sequentialization S of the time-bounded periodic program $C_{\mathcal{H}}$. Notation: J is the set of all jobs; G is the set of global variables of C; i_g is the initial value of g according to C; '*' is a non-deterministic value.

1:	var <i>rnd</i> , <i>start</i> [], <i>end</i> [], <i>localAssert</i> []	16:	function RUNJOB(Job j)
2:	$orall g \in G$. var $g[], v_g[]$	17:	localAssert[j] := 1
		18:	rnd := start[j]
3:	function MAIN()	19:	$\hat{T}(j)$
4:	$orall g \in G$. $g[0]:=i_g$	20:	$\operatorname{assume}(rnd = end[j])$
5:	HYPERPERIOD()	21:	if $rnd < R-1$ then
		22.	$\forall g \in G$. assume
6:	function HyperPeriod()	22.	$(g[rnd] = v_g[rnd+1])$
> 7:	SCHEDULEJOBS()	9 2.	$X := \{j' \mid (j' = j \lor j' \uparrow j) \land$
	$\forall q \in \mathbf{G}$. $\forall r \in [1, R)$.	20.	$(\forall j'' \neq j \cdot j' \uparrow j'' \Rightarrow j'' \sqsubset j) \}$
8:	$v_{a}[r] := *; q[r] := v_{a}[r]$	24:	$\forall j' \in X$. assert $(localAssert[j'])$
	let the ordering of jobs by \sqsubset be		
	$j_0 \sqsubset j_1 \sqsubset \ldots j_{R-1}$	25:	function $\hat{T}(\text{Job } j)$
9:	$\operatorname{RUNJOB}(j_0); \ldots; \operatorname{RUNJOB}(j_{R-1})$		Obtained from T_t by replacing
			each statement 'st' with:
10:	function SCHEDULEJOBS()	26:	$ ext{CS}(j) ext{ ; } st[g \leftarrow g[rnd]]$
			and each 'assert(e)' with:
11:	$\forall j \in J \cdot start[j] = *; end[j] = *$	27:	localAssert[j] := e
	// Jobs are sequential		
12:	$\forall i \in [0, N)$. $\forall k \in [0, J_i)$. assume	28:	function $CS(Job i)$
	$(0 \le start[J(i,k)] \le end[J(i,k)] < R)$	29:	if (*) then return FALSE
	// Jobs are well-separated	20.	a := rnd : rnd := *
13:	$\forall j_1 \triangleleft j_2$ assume $(end[j_1] < start[j_2])$	$\frac{30}{21}$	0 := 1 Ind, 1 Ind := *
14:	$\forall j_1 \uparrow j_2$ • assume $(start[j_1] \leq start[j_2])$	51.	$\forall i' \subset I i \uparrow i' \longrightarrow$
1	// Jobs are well-nested	ຊາ.	$v_{J} \subset J \cdot J \mid J \longrightarrow$
15:	$\forall j_1 \uparrow j_2$ assume $(start[j_2] \leq end[j_1])$	52:	assume ($\pi u \leq sum t[j]$)
	$\implies (start[j_2] \le end[j_2] < end[j_1]))$	33.	return TRUE
		55.	

$\operatorname{COMPSEQ}$

Algorithm 1 The sequentialization S of the time-bounded periodic program $C_{\mathcal{H}}$. Notation: J is the set of all jobs; G is the set of global variables of C; i_g is the initial value of g according to C; '*' is a non-deterministic value.

1:	var rnd , $start[]$, $end[]$, $localAssert[]$	16:	function
2:	$\forall g \in G. var g[], v_g[]$	17:	local
		18:	rnd:
3:	function MAIN()	19:	$\hat{T}(j)$
4:	$orall g \in G$. $g[0] := i_g$	20:	assui
5:	HYPERPERIOD()	21:	if rn
	· ·	<u> </u>	\forall
6:	function HyperPeriod()	22.	
7:	SCHEDULEJOBS()	23.	X :=
0	$\forall g \in G$. $\forall r \in [1, R)$.	20.	$(\forall \cdot)$
8:	$v_q[r] := *; q[r] := v_q[r]$	24:	$\forall j' \in$
	let the ordering of jobs by \Box be		
	$j_0 \sqsubset j_1 \sqsubset \ldots j_{R-1}$	25:	functio
9 :	$\operatorname{RUNJOB}(j_0); \ldots; \operatorname{RUNJOB}(j_{R-1})$		Obtain each of the constant
			each st
10:	function SCHEDULEJOBS()	26:	$\operatorname{CS}(j)$
			and ea
11:	$\forall j \in J$. $start[j] = *; end[j] = *$	27:	local
	// Jobs are sequential		
12:	$\forall i \in [0, N)$, $\forall k \in [0, J_i)$, assume	28:	functio
	$(0 \le start[J(i,k)] \le end[J(i,k)] < R)$	29:	if (*
	// Jobs are well-separated	30.	(
13:	$\forall j_1 \triangleleft j_2$ assume $(end[j_1] < start[j_2])$	30.	0
14:	$\forall j_1 \uparrow j_2 \bullet \operatorname{assume}(start[j_1] \leq start[j_2])$	51.	assui ∀a'
	// Jobs are well-nested	2 9.	vje
15:	$\forall j_1 \uparrow j_2$ assume $(start[j_2] \leq end[j_1])$	JZ:	a
_ • •	$\implies (start[j_2] \le end[j_2] < end[j_1]))$	33:	retu

16: function RUNJOB(Job j) 17: localAssert[j] := 118: rnd := start[j]19: $\hat{T}(j)$ 20: assume(rnd = end[j])21: if rnd < R - 1 then 22: $\forall g \in G$. assume $(g[rnd] = v_g[rnd + 1])$ 23: $X := \{j' \mid (j' = j \lor j' \uparrow j) \land$ $(\forall j'' \neq j \cdot j' \uparrow j'' \Rightarrow j'' \sqsubset j) \}$ 24: $\forall j' \in X$. assert(localAssert[j'])

- 25: function $\hat{T}(\text{Job } j)$ Obtained from T_t by replacing each statement 'st' with:
- 26: CS(j); $st[g \leftarrow g[rnd]]$ and each 'assert(e)' with:
- 27: localAssert[j] := e

28: function CS(Job j)29: if (*) then return FALSE30: o := rnd ; rnd := *31: $assume(o < rnd \le end[j])$ $\forall j' \in J \cdot j \uparrow j' \implies$ 32: $assume(rnd \le start[j'] \lor rnd > end[j'])$ 33: return TRUE

CompSeq

Algorithm 1 The sequentialization S of the time-bounded periodic program $\mathcal{C}_{\mathcal{H}}$. Notation: J is the set of all jobs; G is the set of global variables of \mathcal{C} ; i_g is the initial value of g according to C; '*' is a non-deterministic value.

1:	var <i>rnd</i> , <i>start</i> [], <i>end</i> [], <i>localAssert</i> []	16:	function RUNJOB(Job j)
2:	$\forall g \in G. var g[], v_g[]$	17:	localAssert[j] := 1
		18:	rnd := start[j]
3:	function MAIN()	19:	$\hat{T}(j)$
4:	$orall g \in G$. $g[0] := i_g$	20:	$\operatorname{assume}(rnd = end[j])$
5:	hyperPeriod()	21:	if $rnd < R-1$ then
		$22 \cdot$	$\forall g \in G$. assume
6:	function HyperPeriod()	22.	$(g[rnd] = v_g[rnd+1])$
7:	SCHEDULEJOBS()	<u>9</u> 3.	$X := \{j' \mid (j' = j \lor j' \uparrow j) \land$
0	$\forall q \in G$. $\forall r \in [1, R)$.	20.	$(\forall j'' \neq j \cdot j' \uparrow j'' \Rightarrow j'' \sqsubset j) \}$
8:	$v_{g}[r] := *; g[r] := v_{g}[r]$	24:	$\forall j' \in X$. assert $(localAssert[j'])$
	let the ordering of jobs by \sqsubset be		
	$j_0 \sqsubset j_1 \sqsubset \ldots j_{R-1}$	25:	function $\hat{T}(\text{Job } j)$
9 :	$\operatorname{RUNJOB}(j_0); \ldots; \operatorname{RUNJOB}(j_{R-1})$		Obtained from T_t by replacing
			each statement 'st' with:
10:	function scheduleJobs()	26:	$CS(j); st[g \leftarrow g[rnd]]$
1 1			and each 'assert(e)' with:
11:	$\forall j \in J$. $start[j] = *; end[j] = *$	27:	localAssert[j] := e
	// Jobs are sequential		
12:	$\forall i \in [0, N) \bullet \forall k \in [0, J_i) \bullet \text{ assume}$	28:	function $CS(Job j)$
	$(0 \leq start[J(i, \kappa)] \leq ena[J(i, \kappa)] < R)$	29:	if (*) then return FALSE
19.	// Joos are well-separated	30:	o := rnd : rnd := *
13:	$\forall j_1 \triangleleft j_2$ assume $(ena[j_1] \lt start[j_2])$ $\forall i \land i$ assume $(start[i] \lt start[i])$	31:	assume $(o < rnd < end[i])$
14:	$\forall J_1 \mid J_2$ assume($start[J_1] \leq start[J_2]$)	01.	$\forall i' \in \mathbf{J} \cdot i \uparrow i' \Longrightarrow$
	$\forall i_1 \uparrow i_2 \rightarrow contract [i_1] < cont[i_1]$	32:	assume $(rnd < start[i'])$
15:	$v_{J1} \mid J_2 \bullet assume(start[J_2] \leq ena[J_1]$ $\longrightarrow (start[i_2] \leq ond[i_2] \leq ond[i_2]))$		rnd > end[i'])
	$\longrightarrow (start[j_2] \ge ena[j_2] < ena[j_1]))$	<u></u>	

33:

return TRUE

infeasible thread executions by adding **constraints**

HARMONICSEQ

Algorithm 2 Procedure to assign legal starting and ending rounds to jobs in a harmonic program.

1: **var** min[], max[] //extra variables

2: function ScheduleHarmonic()

 $\forall j \in J. \ start[j] = *; end[j] = *; min[j] = *; max[j] = *;$ 3: // Correctness of min and max $\forall n \in \mathcal{T}$. $isleaf(n) \implies assume(min[n] = start[n] \land max[n] = end[n])$ 4: $\forall n \in \mathcal{T}$. $\neg isleaf(n) \implies assume(min[n] = MIN(start[n], min[first(n)]))$ 5: $\forall n \in \mathcal{T}$. $\neg isleaf(n) \implies assume(max[n] = MAX(end[n], max[last(n)]))$ 6: // Jobs are sequential $\forall n \in \mathcal{T}$. assume $(low(n) \leq start[n] \leq end[n] \leq high(n))$ 7: // Jobs are well-separated 8: $\forall n \in \mathcal{T}$. $hasNext(n) \implies assume(max[n] < min[next(n)])$ $\forall j_1 \uparrow j_2$. assume $(start[j_1] \leq start[j_2])$ 9: // Jobs are well-nested $\forall j_1 \uparrow j_2$. assume $(start[j_2] \leq end[j_1] \implies (start[j_2] \leq end[j_1]))$ 10:

 $\mathcal{T}(n)$ = sub-tree of \mathcal{T} rooted at nisleaf(n)= true iff *n* is a leaf node size(n)= number of nodes in $\mathcal{T}(n)$ level(n) = level of node nid(n)= position of n in the DFS hasNext(n) = true iff n is not the lastorder of \mathcal{T} node at level level(n)next(n) = node after n at level level(n)first(n)= first child of nmaxid(n) = id(n) + size(n) - 1last(n) = last child of nlow(n) = id(n) - level(n)high(n)= maxid(n)

Case Study: Concurrent Turing Machine

Controller Task Priority: I (Lowest) Period 500ms | WCET: 440ms

I. Calibrate Sensor 2. Command other tasks

1010

Writer Task Priority: 4 Period 25ms | WCET: < 1ms Flip bits

> Reader Task Priority: 3 Period 50ms | WCET: < 1ms Read bits using NXT-colorsensor

TapeMover Task Priority: 2 Period 100ms | WCET: < 1ms Move the tape (left or right)

1001

```
Controller
case C_WRITE:
                                                                    Task
 /* Check if we need to chagne the bit */
  if(R(input) != R(output)) {
   /* Check the header and move it back if necessary */
    if(nxt_motor_get_count(READ_MOTOR) > 0 && R(R_state) == READ_IDLE) {
      W(R_state, READ_MOVE_HEADER_BACKWARD);
    }
   /* Check the header and flip the bit if it is safe to do */
    if(nxt_motor_get_count(READ_MOTOR) <= 0 && R(W_state) == WRITE_IDLE) {</pre>
      W(W_state, WRITE_FLIP);
    }
  } else {
   /* Nothing to change for writer */
    W(W_state, WRITE_IDLE);
    C_state = C_MOVE;
  }
  break;
                                                                Writer Task
```

```
case WRITE_FLIP: VVriter Task
#ifdef VERIFICATION
    /* Property 3: When writer flips a bit, the tape motor and read
    motor should be stopped. */
    /* FAILED!! with BOUND 120 */
    assert(R(T_speed) == 0 && R(R_speed) == 0);
#endif
```


Experimental Results

				MONO	Seq			HARMONICSEQ					
Name				SAT Si	ize	S	Time			SAT Siz	ze	S	Time
	OL	SL	GL	Var	Clause		(sec)	SL SL	GL	Var	Clause		(sec)
	•				1 hyp	er-	-period	•					
nxt.ok1	396	2,158	12K	128K	399K	Y	21.22	2,378	17K	110K	354K	Y	4.22
nxt.bug1	398	$2,\!158$	12K	128K	399K	Ν	6.22	2,378	17K	110K	354K	Ν	4.36
nxt.ok2	388	2,215	12K	132K	410K	Y	11.16	2,432	18K	111K	356K	Y	4.69
nxt.bug2	405	$2,\!389$	15K	135K	422K	N	8.66	2,704	23K	114K	372K	Ν	5.81
nxt.ok3	405	$2,\!389$	15K	135K	425K	Y	14.46	2,704	23K	109K	358K	Y	5.71
aso.bug1	421	$2,\!557$	17K	$167 \mathrm{K}$	$541 \mathrm{K}$	Ν	12.05	3,094	29K	173K	568K	Ν	6.67
aso.bug2	421	$2,\!627$	17K	$167 \mathrm{K}$	539K	Ν	11.61	3,184	29K	$165 \mathrm{K}$	$549 \mathrm{K}$	Ν	6.71
aso.ok1	418	$2,\!561$	17K	164K	525K	Y	22.20	3,098	28K	$147 \mathrm{K}$	486K	Y	6.51
aso.bug3	445	3,118	24K	350K	$1,\!117K$	Ν	22.15	4,131	41K	$341 \mathrm{K}$	1,108K	Y	19.27
aso.bug4	444	$3,\!105$	23K	325K	1,027K	Ν	16.32	4,118	40K	$307 \mathrm{K}$	1,001K	Ν	10.83
aso.ok2	443	3,106	23K	326K	$1,\!035K$	Y	601.59	4,119	40K	$311 \mathrm{K}$	1,006K	Y	21.94
	•				4 hype	er-	periods	•	I.				
nxt.ok1	396	14,014	57K	1,825K	5,816K	Y	1,305	2,393	71K	471K	1,610K	Y	70.59
nxt.bug1	398	14,014	57K	1,825K	$5,\!816K$	Ν	1,406	2,393	71K	$471 \mathrm{K}$	$1,\!610K$	Ν	73.27
nxt.ok2	388	14,156	60K	1,850K	$5,\!849 { m K}$	Y	1,382	2,447	73K	$475 \mathrm{K}$	$1,\!618K$	Y	67.08
nxt.bug2	405	$14,\!573$	71K	1,887K	$5,\!978\mathrm{K}$	Ν	362	2,722	94K	$485 \mathrm{K}$	1,667K	Ν	77.39
nxt.ok3	405	$14,\!573$	71K	1,884K	$5,964 \mathrm{K}$	U		2,722	93K	466K	1,723K	Y	101.01
aso.bug1	421	14,942	81K	2,359K	$7,\!699 { m K}$	N	894	3,115	115K	726K	2,741 K	Ν	143.52
aso.bug2	421	$15,\!097$	81K	2,359K	$7,\!689 { m K}$	N	773	3,205	116K	692K	2,438K	Ν	107.66
aso.ok1	418	14,946	80K	2,331K	7,590 K	U		3,119	114K	$620 \mathrm{K}$	2,188K	Y	110.21
aso.bug3	445	16,024	113K	5,016K	16,162K	Ν	9,034	4,161	167K	1,406K	4,774K	Y	215.02
aso.bug4	444	$16,\!055$	108K	4,729K	$15,\!141 { m K}$	N	6,016	4,148	161K	1,271K	4,295K	N	168.22
aso.ok2	443	$16,\!056$	109K	4,734K	$15,\!159K$	U		4,149	162K	$1,\!289K$	4,360 K	Υ	200.25

Table 1. Experimental results. OL and SL = # lines of code in the original C program and the generated sequentialization S, respectively; GL = size of the GOTO program produced by CBMC; Var and Clause = # variables and clauses in the SAT instance, respectively; S = verification result – 'Y' for SAFE, 'N' for UNSAFE, and 'U' for timeout (12,000s); Time = verification time in sec.

				MONO	Seq			HARMONICSEQ					
Name				SAT Si	ize	S	Time			SAT Siz	ze	S	Time
	OL	SL	GL	Var	Clause		(sec)	SL SL	GL	Var	Clause		(sec)
	•				1 hyp	er-	-period	•	•				
nxt.ok1	396	2,158	12K	128K	399K	Y	21.22	$2,\!378$	17K	110K	354K	Y	4.22
nxt.bug1	398	2,158	12K	128K	399K	N	6.22	$2,\!378$	17K	110K	354K	N	4.36
nxt.ok2	388	2,215	12K	132K	410K	Y	11.16	$2,\!432$	18K	111K	356K	Y	4.69
nxt.bug2	405	2,389	15K	135K	422K	N	8.66	2,704	23K	114K	372K	N	5.81
nxt.ok3	405	2,389	15K	135K	425K	Y	14.46	2,704	23K	109K	358K	Y	5.71
aso.bug1	421	$2,\!557$	17K	$167 \mathrm{K}$	$541 \mathrm{K}$	N	12.05	$3,\!094$	29K	173K	568K	Ν	6.67
aso.bug2	421	2,627	17K	$167 \mathrm{K}$	539K	N	11.61	$3,\!184$	29K	$165 \mathrm{K}$	$549 \mathrm{K}$	N	6.71
aso.ok1	418	2,561	17K	164K	525K	Y	22.20	$3,\!098$	28K	147K	486K	Y	6.51
aso.bug3	445	3,118	24K	$350 \mathrm{K}$	$1,\!117K$	N	22.15	$4,\!131$	41K	$341 \mathrm{K}$	1,108K	Y	19.27
aso.bug4	444	3,105	23K	325K	1,027K	N	16.32	$4,\!118$	40K	$307 \mathrm{K}$	1,001K	N	10.83
aso.ok2	443	3,106	23K	326K	$1,\!035K$	Y	601.59	$4,\!119$	40K	$311 \mathrm{K}$	1,006K	Y	21.94
					4 hype	er-	periods						
nxt.ok1	396	14,014	57K	1,825K	$5,\!816K$	Y	1,305	2,393	71K	471K	1,610K	Y	70.59
nxt.bug1	398	14,014	57K	$1,\!825K$	$5,\!816K$	N	1,406	2,393	71K	$471 \mathrm{K}$	1,610K	N	73.27
nxt.ok2	388	$14,\!156$	60K	$1,\!850K$	$5,\!849 { m K}$	Y	1,382	2,447	73K	475K	1,618K	Y	67.08
nxt.bug2	405	$14,\!573$	71K	$1,\!887\mathrm{K}$	$5,\!978\mathrm{K}$	N	362	2,722	94K	$485 \mathrm{K}$	1,667K	Ν	77.39
nxt.ok3	405	$14,\!573$	71K	$1,\!884K$	$5,964 \mathrm{K}$	U		2,722	93K	466K	1,723K	Y	101.01
aso.bug1	421	$14,\!942$	81K	$2,359 \mathrm{K}$	$7,\!699 { m K}$	N	894	3,115	115K	726K	2,741 K	N	143.52
aso.bug2	421	$15,\!097$	81K	$2,359 \mathrm{K}$	$7,\!689 { m K}$	N	773	3,205	116K	692K	2,438K	N	107.66
aso.ok1	418	14,946	80K	$2,331 \mathrm{K}$	$7,\!590 { m K}$	U		3,119	114K	620K	$2,\!188K$	Y	110.21
aso.bug3	445	16,024	113K	$5,\!016K$	$16,\!162\mathrm{K}$	N	9,034	4,161	167K	1,406K	4,774K	Y	215.02
aso.bug4	444	$ 16,\!055 $	108K	4,729K	$15,\!141 { m K}$	N	6,016	4,148	161K	$1,\!271 {\rm K}$	$4,\!295K$	N	168.22
aso.ok2	443	$16,\!056$	109K	4,734K	$15,\!159\mathrm{K}$	U		4,149	162K	1,289K	4,360K	Y	200.25

Table 1. Experimental results. OL and SL = # lines of code in the original C program and the generated sequentialization S, respectively; GL = size of the GOTO program produced by CBMC; Var and Clause = # variables and clauses in the SAT instance, respectively; S = verification result – 'Y' for SAFE, 'N' for UNSAFE, and 'U' for timeout (12,000s); Time = verification time in sec.

				MONO	Seq			HARMONICSEQ					
Name				SAT Si	ze	S	Time			SAT Siz	ze	S	Time
	OL	SL	GL	Var	Clause		(sec)	SL	GL	Var	Clause		(sec)
	•			_	1 hyp	er-	-period	•				•	
nxt.ok1	396	2,158	12K	128K	399K	Y	21.22	2,378	17K	110K	354K	Y	4.22
nxt.bug1	398	$2,\!158$	12K	128K	399K	Ν	6.22	2,378	17K	110K	354K	Ν	4.36
nxt.ok2	388	2,215	12K	132K	410K	Y	11.16	2,432	18K	111K	356K	Y	4.69
nxt.bug2	405	2,389	15K	135K	422K	N	8.66	2,704	23K	114K	372K	N	5.81
nxt.ok3	405	2,389	15K	135K	425K	Y	14.46	2,704	23K	109K	358K	Y	5.71
aso.bug1	421	2,557	17K	$167 \mathrm{K}$	$541 \mathrm{K}$	Ν	12.05	3,094	29K	173K	568K	Ν	6.67
aso.bug2	421	2,627	17K	$167 \mathrm{K}$	539K	Ν	11.61	3,184	29K	165K	$549 \mathrm{K}$	N	6.71
aso.ok1	418	2,561	17K	164K	525K	Y	22.20	3,098	28K	147K	486K	Y	6.51
aso.bug3	445	3,118	24K	350K	$1,\!117K$	Ν	22.15	4,131	41K	341K	1,108K	Y	19.27
aso.bug4	444	$3,\!105$	23K	325K	1,027K	Ν	16.32	4,118	40K	307K	1,001K	N	10.83
aso.ok2	443	3,106	23K	326K	$1,035 { m K}$	Y	601.59	4,119	40K	311K	1,006K	Y	21.94
					4 hype	er-	periods	•				1	
nxt.ok1	396	14,014	57K	1,825K	5,816K	Y	1,305	2,393	71K	471K	1,610K	Y	70.59
nxt.bug1	398	14,014	$57\mathrm{K}$	1,825K	$5,\!816K$	Ν	1,406	2,393	71K	$471 \mathrm{K}$	1,610K	N	73.27
nxt.ok2	388	14,156	60K	1,850 K	$5,\!849 { m K}$	Y	1,382	2,447	73K	475K	1,618K	Y	67.08
nxt.bug2	405	14,573	71K	1,887K	$5,978 \mathrm{K}$	Ν	362	2,722	94K	485K	1,667K	Ν	77.39
nxt.ok3	405	14,573	$71 \mathrm{K}$	1,884K	$5,964 \mathrm{K}$	U		2,722	93K	466K	1,723K	Y	101.01
aso.bug1	421	14,942	81K	2,359K	$7,\!699 { m K}$	N	894	3,115	115K	726K	2,741 K	N	143.52
aso.bug2	421	15,097	81K	2,359K	$7,\!689 { m K}$	N	773	3,205	116K	692K	2,438K	N	107.66
aso.ok1	418	14,946	80K	$2,331 {\rm K}$	7,590 K	U		3,119	114K	620K	2,188K	Y	110.21
aso.bug3	445	16,024	113K	5,016K	16,162K	N	9,034	4,161	167K	1,406K	4,774K	Y	215.02
aso.bug4	444	16,055	108K	4,729K	$15,\!141 { m K}$	N	6,016	4,148	161K	1,271K	4,295K	N	168.22
aso.ok2	443	$16,\!056$	109K	4,734K	$15,\!159K$	U		4,149	162K	$1,\!289K$	4,360 K	Y	200.25

				MONO	Seq			HARMONICSEQ					
Name				SAT Si	ze	S	Time			SAT Siz	ze	S	Time
	OL	SL	GL	Var	Clause		(sec)	SL	GL	Var	Clause		(sec)
nxt.ok1	396	2,158	12K	128K	399K	Υ	21.22	2,378	17K	110K	354K	Y	4.22
nxt.bug1	398	$2,\!158$	12K	128K	399K	Ν	6.22	2,378	17K	110K	354K	Ν	4.36
nxt.ok2	388	2,215	12K	132K	410K	Υ	11.16	2,432	18K	111K	356K	Y	4.69
nxt.bug2	405	2,389	15K	135K	422K	Ν	8.66	2,704	23K	114K	372K	Ν	5.81
nxt.ok3	405	2,389	15K	135K	425K	Υ	14.46	2,704	23K	109K	358K	Y	5.71
aso.bug1	421	2,557	17K	167K	$541 \mathrm{K}$	Ν	12.05	3,094	29K	173K	568K	Ν	6.67
aso.bug2	421	$2,\!627$	17K	167K	539K	Ν	11.61	3,184	29K	165K	549K	Ν	6.71
aso.ok1	418	2,561	17K	164K	525K	Y	22.20	3,098	28K	147K	486K	Y	6.51
aso.bug3	445	3,118	24K	350K	$1,\!117K$	Ν	22.15	4,131	41K	341K	1,108K	Y	19.27
aso.bug4	444	3,105	23K	325K	1,027K	Ν	16.32	4,118	40K	307K	1,001K	Ν	10.83
aso.ok2	443	3,106	23K	326K	$1,\!035 { m K}$	Υ	601.59	4,119	40K	311K	1,006K	Υ	21.94
	•			_	4 hype	er-	periods						
nxt.ok1	396	14,014	57K 1	1,825K	$5,\!816K$	Y	1,305	2,393	71K	471K	1,610K	Y	70.59
nxt.bug1	398	14,014	57K 1	1,825K	$5,\!816K$	Ν	1,406	2,393	71K	$471 \mathrm{K}$	$1,\!610K$	N	73.27
nxt.ok2	388	$14,\!156$	60K 1	1,850 K	$5,\!849 { m K}$	Y	1,382	2,447	73K	475K	1,618K	Y	67.08
nxt.bug2	405	$14,\!573$	71K 1	l,887K	$5,\!978\mathrm{K}$	Ν	362	2,722	94K	485K	1,667K	Ν	77.39
nxt.ok3	405	$14,\!573$	71K 1	,884K	$5,964 \mathrm{K}$	U		2,722	93K	466K	1,723K	Y	101.01
aso.bug1	421	$14,\!942$	81K 2	2,359K	$7,\!699 { m K}$	Ν	894	3,115	115K	726K	$2,741 \mathrm{K}$	N	143.52
aso.bug2	421	$15,\!097$	81K 2	2,359K	$7,\!689\mathrm{K}$	Ν	773	3,205	116K	692K	2,438K	Ν	107.66
aso.ok1	418	14,946	80K 2	2,331K	$7,\!590 { m K}$	U		3,119	114K	620K	$2,\!188K$	Y	110.21
aso.bug3	445	16,024	113K 5	5,016K	16,162K	Ν	9,034	4,161	167K	$1,\!406K$	4,774K	Y	215.02
aso.bug4	444	$ 16,\!055 $	108K 4	4,729K	$15,\!141 { m K}$	Ν	6,016	4,148	161K	$1,\!271K$	4,295K	Ν	168.22
aso.ok2	443	$16,\!056$	109K 4	4,734K	$15,\!159K$	U		4,149	162K	$1,\!289\mathrm{K}$	$4,\!360K$	Y	200.25

				MONO	Seq			HARMONICSEQ					
Name				SAT Si	ize	S	Time			SAT Siz	ze	S	Time
	OL	SL	GL	Var	Clause		(sec)	SL	GL	Var	Clause		(sec)
	1 hyper-period												
nxt.ok1	396	2,158	12K	128K	399K	Y	21.22	2,378	17K	110K	354K	Y	4.22
nxt.bug1	398	$2,\!158$	12K	128K	399K	Ν	6.22	2,378	17K	110K	354K	Ν	4.36
nxt.ok2	388	$2,\!215$	12K	132K	410K	Υ	11.16	2,432	18K	111K	356K	Υ	4.69
nxt.bug2	405	$2,\!389$	15K	135K	422K	Ν	8.66	2,704	23K	114K	372K	Ν	5.81
nxt.ok3	405	$2,\!389$	15K	135K	425K	Υ	14.46	2,704	23K	109K	358K	Υ	5.71
aso.bug1	421	$2,\!557$	17K	$167 \mathrm{K}$	$541 \mathrm{K}$	Ν	12.05	3,094	29K	173K	568K	Ν	6.67
aso.bug2	421	$2,\!627$	17K	$167 \mathrm{K}$	539K	Ν	11.61	3,184	29K	$165 \mathrm{K}$	549K	Ν	6.71
aso.ok1	418	$2,\!561$	17K	164K	525K	Υ	22.20	3,098	28K	147K	486K	Υ	6.51
aso.bug3	445	$3,\!118$	24K	350K	$1,\!117K$	Ν	22.15	4,131	41K	$341 \mathrm{K}$	1,108K	Υ	19.27
aso.bug4	444	$3,\!105$	23K	325K	1,027K	Ν	16.32	4,118	40K	307K	1,001K	Ν	10.83
aso.ok2	443	$3,\!106$	23K	326K	$1,\!035 { m K}$	Υ	601.59	4,119	40K	311K	1,006K	Y	21.94
					4 hype	er-	periods						
nxt.ok1	396	14,014	57K	1,825K	$5,\!816K$	Y	1,305	2,393	71K	471K	$1,\!610K$	Y	70.59
nxt.bug1	398	$14,\!014$	57K	1,825K	$5,\!816K$	N	1,406	2,393	71K	$471 \mathrm{K}$	$1,\!610K$	Ν	73.27
nxt.ok2	388	$14,\!156$	60K	1,850 K	$5,\!849 { m K}$	Y	1,382	2,447	73K	475K	$1,\!618\mathrm{K}$	Y	67.08
nxt.bug2	405	$14,\!573$	71K	$1,\!887\mathrm{K}$	$5,\!978\mathrm{K}$	N	362	2,722	94K	485K	$1,\!667\mathrm{K}$	Ν	77.39
nxt.ok3	405	$14,\!573$	71K	$1,\!884\mathrm{K}$	$5,\!964\mathrm{K}$	U		2,722	93K	466K	$1{,}723\mathrm{K}$	Y	101.01
aso.bug1	421	$14,\!942$	81K	$2{,}359\mathrm{K}$	$7,\!699 { m K}$	N	894	3,115	115K	726K	$2{,}741\mathrm{K}$	Ν	143.52
aso.bug2	421	$15,\!097$	81K	$2{,}359\mathrm{K}$	$7,\!689 { m K}$	N	773	3,205	116K	692K	$2{,}438\mathrm{K}$	Ν	107.66
aso.ok1	418	$14,\!946$	80K	$2,\!331\mathrm{K}$	$7,\!590 { m K}$	U		3,119	114K	$620 \mathrm{K}$	$2{,}188\mathrm{K}$	Y	110.21
aso.bug3	445	$16,\!024$	113K	$5{,}016K$	$16,\!162\mathrm{K}$	N	9,034	4,161	167K	$1,\!406K$	$4{,}774\mathrm{K}$	Y	215.02
aso.bug4	444	$16,\!055$	108K	$4{,}729\mathrm{K}$	$15,\!141 { m K}$	N	6,016	4,148	161K	$1,\!271\mathrm{K}$	$4,\!295\mathrm{K}$	Ν	168.22
aso.ok2	443	$16,\!056$	109K	$4{,}734\mathrm{K}$	$15,\!159K$	U		4,149	162K	$1,\!289\mathrm{K}$	4,360K	Y	200.25

				MONO	Seq			HARMONICSEQ					
Name				SAT Si	ize	S	Time			SAT Siz	ze	S	Time
	OL	SL	GL	Var	Clause		(sec)	SL	GL	Var	Clause		(sec)
		· · ·			1 hyp	er-	-period	•					
nxt.ok1	396	2,158	12K	128K	399K	Y	21.22	2,378	17K	110K	354K	Y	4.22
nxt.bug1	398	$2,\!158$	12K	128K	399K	Ν	6.22	2,378	17K	110K	354K	Ν	4.36
nxt.ok2	388	2,215	12K	132K	410K	Y	11.16	2,432	18K	111K	356K	Y	4.69
nxt.bug2	405	2,389	15K	135K	422K	N	8.66	2,704	23K	114K	372K	Ν	5.81
nxt.ok3	405	2,389	15K	135K	425K	Y	14.46	2,704	23K	109K	358K	Y	5.71
aso.bug1	421	$2,\!557$	17K	$167 \mathrm{K}$	$541 \mathrm{K}$	Ν	12.05	3,094	29K	173K	568K	Ν	6.67
aso.bug2	421	2,627	17K	$167 \mathrm{K}$	539K	Ν	11.61	3,184	29K	$165 \mathrm{K}$	$549 \mathrm{K}$	Ν	6.71
aso.ok1	418	2,561	17K	164K	525K	Y	22.20	3,098	28K	147K	486K	Y	6.51
aso.bug3	445	3,118	24K	350K	$1,\!117K$	Ν	22.15	4,131	41K	$341 \mathrm{K}$	1,108K	Y	19.27
aso.bug4	444	3,105	23K	325K	1,027K	N	16.32	4,118	40K	$307 \mathrm{K}$	1,001K	Ν	10.83
aso.ok2	443	3,106	23K	326K	$1,\!035K$	Y	601.59	4,119	40K	$311 \mathrm{K}$	1,006K	Y	21.94
	•				4 hype	er-	periods						
nxt.ok1	396	14,014	57K	1,825K	$5,\!816K$	Y	1,305	2,393	71K	471K	1,610K	Y	70.59
nxt.bug1	398	14,014	57K	1,825K	$5,\!816K$	Ν	1,406	2,393	71K	$471 \mathrm{K}$	1,610K	Ν	73.27
nxt.ok2	388	$14,\!156$	60K	$1,\!850K$	$5,\!849 { m K}$	Y	1,382	2,447	73K	$475 \mathrm{K}$	1,618K	Y	67.08
nxt.bug2	405	$14,\!573$	71K	$1,\!887\mathrm{K}$	$5,\!978\mathrm{K}$	Ν	362	2,722	94K	$485 \mathrm{K}$	1,667K	Ν	77.39
nxt.ok3	405	$14,\!573$	71K	$1,\!884K$	$5,\!964\mathrm{K}$	U	—	2,722	93K	466K	1,723K	Y	101.01
aso.bug1	421	$14,\!942$	81K	$2,\!359\mathrm{K}$	$7,\!699 { m K}$	Ν	894	3,115	115K	726K	2,741 K	Ν	143.52
aso.bug2	421	$15,\!097$	81K	2,359K	$7,\!689 { m K}$	Ν	773	3,205	116K	692K	2,438K	Ν	107.66
aso.ok1	418	14,946	80K	$2,331 \mathrm{K}$	$7,\!590 { m K}$	U	—	3,119	114K	620K	$2,\!188K$	Y	110.21
aso.bug3	445	16,024	113K	$5,\!016K$	16,162K	Ν	9,034	4,161	167K	1,406K	4,774K	Y	215.02
aso.bug4	444	$ 16,\!055 $	108K	4,729K	$15,\!141 { m K}$	Ν	6,016	4,148	161K	$1,271 {\rm K}$	4,295K	Ν	168.22
aso.ok2	443	$16,\!056$	109K	$4{,}734\mathrm{K}$	$15,\!159K$	U	—	4,149	162K	$1,\!289\mathrm{K}$	$4,\!360K$	Y	200.25

Table 1. Experimental results. OL and SL = # lines of code in the original C program and the generated sequentialization S, respectively; GL = size of the GOTO program produced by CBMC; Var and Clause = # variables and clauses in the SAT instance, respectively; S = verification result – 'Y' for SAFE, 'N' for UNSAFE, and 'U' for timeout (12,000s); Time = verification time in sec.

				MONO	Seq			HARMONICSEQ					
Name				SAT Si	ize	S	Time			SAT Siz	ze	S	Time
	OL	SL	GL	Var	Clause		(sec)	SL	GL	Var	Clause		(sec)
	•				1 hyp	er-	period						
nxt.ok1	396	2,158	12K	128K	399K	Υ	21.22	2,378	17K	110K	354K	Y	4.22
nxt.bug1	398	$2,\!158$	12K	128K	399K	Ν	6.22	$2,\!378$	17K	110K	354K	Ν	4.36
nxt.ok2	388	$2,\!215$	12K	132K	410K	Υ	11.16	2,432	18K	111K	356K	Y	4.69
nxt.bug2	405	$2,\!389$	15K	135K	422K	Ν	8.66	2,704	23K	114K	372K	Ν	5.81
nxt.ok3	405	$2,\!389$	15K	135K	425K	Υ	14.46	2,704	23K	109K	358K	Y	5.71
aso.bug1	421	$2,\!557$	17K	$167 \mathrm{K}$	$541 \mathrm{K}$	Ν	12.05	3,094	29K	173K	568K	Ν	6.67
aso.bug2	421	$2,\!627$	17K	$167 \mathrm{K}$	539K	Ν	11.61	3,184	29K	$165 \mathrm{K}$	549K	Ν	6.71
aso.ok1	418	$2,\!561$	17K	164K	525K	Υ	22.20	3,098	28K	147K	486K	Y	6.51
aso.bug3	445	$3,\!118$	24K	$350 \mathrm{K}$	$1,\!117K$	Ν	22.15	4,131	41K	$341 \mathrm{K}$	1,108K	Y	19.27
aso.bug4	444	$3,\!105$	23K	325K	1,027K	Ν	16.32	4,118	40K	$307 \mathrm{K}$	1,001K	Ν	10.83
aso.ok2	443	$3,\!106$	23K	326K	$1,\!035K$	Y	601.59	4,119	40K	$311 \mathrm{K}$	1,006K	Y	21.94
	•				4 hype	er-	periods		•				
nxt.ok1	396	14,014	57K	1,825K	5,816K	Y	1,305	2,393	71K	471K	1,610K	Y	70.59
nxt.bug1	398	14,014	57K	1,825K	$5,\!816K$	Ν	1,406	2,393	71K	$471 \mathrm{K}$	1,610K	Ν	73.27
nxt.ok2	388	$14,\!156$	60K	1,850 K	$5,\!849 { m K}$	Υ	1,382	2,447	73K	$475 \mathrm{K}$	$1,\!618K$	Y	67.08
nxt.bug2	405	$14,\!573$	71K	$1,887 \mathrm{K}$	$5,\!978\mathrm{K}$	Ν	362	2,722	94K	$485 \mathrm{K}$	1,667K	Ν	77.39
nxt.ok3	405	$14,\!573$	71K	1,884K	$5,964 \mathrm{K}$	U		2,722	93K	466K	1,723K	Y	101.01
aso.bug1	421	14,942	81K	2,359K	$7,\!699 { m K}$	Ν	894	3,115	115K	726K	2,741 K	Ν	143.52
aso.bug2	421	$15,\!097$	81K	2,359K	$7,\!689 { m K}$	Ν	773	3,205	116K	692K	2,438K	Ν	107.66
aso.ok1	418	14,946	80K	$2,331 {\rm K}$	7,590 K	U		3,119	114K	$620 \mathrm{K}$	2,188K	Y	110.21
aso.bug3	445	16,024	113K	5,016K	16,162K	Ν	9,034	4,161	167K	1,406K	4,774K	Y	215.02
aso.bug4	444	$16,\!055$	108K	4,729K	$15,\!141 { m K}$	Ν	6,016	4,148	161K	1,271K	4,295K	N	168.22
aso.ok2	443	$16,\!056$	109K	4,734K	$15,\!159K$	U		4,149	162K	$1,\!289K$	4,360 K	Υ	200.25

		MONOSEQ						HARMONICSEQ						
Name			SAT Size			S	Time		SAT Size			S	Time	
	OL	SL	GL	Var	Clause		(sec)	SL	GL	Var	Clause		(sec)	
1 hyper-period														
nxt.ok1	396	2,158	12K	128K	399K	Y	21.22	2,378	17K	110K	354K	Y	4.22	
nxt.bug1	398	2,158	12K	128K	399K	Ν	6.22	2,378	17K	110K	354K	Ν	4.36	
nxt.ok2	388	2,215	12K	132K	410K	Y	11.16	2,432	18K	111K	356K	Y	4.69	
nxt.bug2	405	2,389	15K	135K	422K	Ν	8.66	2,704	23K	114K	372K	Ν	5.81	
nxt.ok3	405	2,389	15K	135K	425K	Y	14.46	2,704	23K	109K	358K	Y	5.71	
aso.bug1	421	2,557	17K	$167 \mathrm{K}$	$541 \mathrm{K}$	Ν	12.05	3,094	29K	173K	568K	Ν	6.67	
aso.bug2	421	2,627	17K	$167 \mathrm{K}$	539K	Ν	11.61	3,184	29K	$165 \mathrm{K}$	549K	N	6.71	
aso.ok1	418	2,561	17K	164K	525K	Y	22.20	3,098	28K	147K	486K	Y	6.51	
aso.bug3	445	3,118	24K	350K	$1,\!117K$	Ν	22.15	4,131	41K	$341 \mathrm{K}$	1,108K	Y	19.27	
aso.bug4	444	3,105	23K	325K	1,027K	Ν	16.32	4,118	40K	$307 \mathrm{K}$	1,001K	Ν	10.83	
aso.ok2	443	3,106	23K	326K	$1,\!035K$	Y	601.59	4,119	40K	$311 \mathrm{K}$	1,006K	Y	21.94	
	4 hyper-periods													
nxt.ok1	396	14,014	57K	1,825K	$5,\!816K$	Y	1,305	2,393	71K	471K	1,610K	Y	70.59	
nxt.bug1	398	14,014	57K	1,825K	$5,\!816K$	Ν	1,406	2,393	71K	$471 \mathrm{K}$	1,610K	Ν	73.27	
nxt.ok2	388	14,156	60K	1,850K	$5,\!849 { m K}$	Υ	1,382	2,447	73K	$475 \mathrm{K}$	1,618K	Y	67.08	
nxt.bug2	405	14,573	71K	1,887K	$5,\!978\mathrm{K}$	Ν	362	2,722	94K	$485 \mathrm{K}$	1,667K	Ν	77.39	
nxt.ok3	405	14,573	71K	1,884K	$5,964 \mathrm{K}$	U	—	2,722	93K	466K	1,723K	Y	101.01	
aso.bug1	421	14,942	81K	2,359K	$7,\!699 { m K}$	Ν	894	3,115	115K	726K	2,741 K	Ν	143.52	
aso.bug2	421	15,097	81K	2,359K	$7,\!689\mathrm{K}$	Ν	773	3,205	116K	692K	2,438K	Ν	107.66	
aso.ok1	418	14,946	80K	2,331K	7,590 K	U		3,119	114K	$620 \mathrm{K}$	2,188K	Y	110.21	
aso.bug3	445	16,024	113K	5,016K	16,162K	Ν	9,034	4,161	167K	1,406K	4,774K	Y	215.02	
aso.bug4	444	16,055	108K	4,729K	$15,\!141 { m K}$	Ν	6,016	4,148	161K	$1,271 {\rm K}$	4,295K	Ν	168.22	
aso.ok2	443	$16,\!056$	109K	$4,734\mathrm{K}$	15,159K	U		4,149	162K	1,289K	4,360K	Y	200.25	

		MONOSEQ						HARMONICSEQ						
Name				SAT S	ize	S	Time			SAT Siz	ze	S	Time	
	OL	SL	GL	Var	Clause		(sec)	SL	GL	Var	Clause		(sec)	
1 hyper-period														
nxt.ok1	396	2,158	12K	128K	399K	Y	21.22	2,378	17K	110K	354K	Y	4.22	
nxt.bug1	398	2,158	12						l	N K	354K	Ν	4.36	
nxt.ok2	388	2,215	12	$\mathbf{K} 356 \mathbf{K} \mathbf{Y} 4.6$									4.69	
nxt.bug2	405	2,389	15	MonoSeq considers infeasible thread K 372K N 5.81 executions and declares the program unsafe K 358K Y 5.71 (False Alarm) K 568K N 6.67										
nxt.ok3	405	2,389	$ _{15}$ ex											
aso.bug1	421	2,557	17											
aso.bug2	421	2,627	17							K	$549 \mathrm{K}$	Ν	6.71	
aso.ok1	418	2,561	17K	164K	525K	V	22.20	3,098	28K	147K	486K	Y	6.51	
aso.bug3	445	3,118	24K	350K	$1,\!117K$	Ν	22.15	4,131	41K	$341 \mathrm{K}$	1,108K	Y	19.27	
aso.bug4	444	3,105	23K	325K	1,027K	Ν	16.32	4,118	40K	$307 \mathrm{K}$	1,001K	Ν	10.83	
aso.ok2	443	3,106	23K	326K	$1,035 { m K}$	Y	601.59	4,119	40K	$311 \mathrm{K}$	1,006K	Y	21.94	
	4 hyper-periods													
nxt.ok1	396	14,014	57K	1,825K	5,816K	Y	1,305	2,393	71K	471K	1,610K	Y	70.59	
nxt.bug1	398	14,014	57K	$1,\!825K$	$5,\!816K$	N	1,406	2,393	71K	$471 \mathrm{K}$	1,610K	Ν	73.27	
nxt.ok2	388	14,156	60K	1,850K	$5,\!849 { m K}$	Y	1,382	2,447	73K	475K	1,618K	Y	67.08	
nxt.bug2	405	14,573	71K	$1,\!887K$	$5,\!978 { m K}$	N	362	2,722	94K	$485 \mathrm{K}$	1,667K	Ν	77.39	
nxt.ok3	405	14,573	71K	$1,\!884K$	$5,964 \mathrm{K}$	U		2,722	93K	466K	1,723K	Y	101.01	
aso.bug1	421	14,942	81K	2,359K	$7,\!699 { m K}$	N	894	3,115	115K	726K	2,741 K	Ν	143.52	
aso.bug2	421	15,097	81K	2,359K	$7,\!689 { m K}$	N	773	3,205	116K	692K	2,438K	Ν	107.66	
aso.ok1	418	14,946	80K	$2,331 \mathrm{K}$	7,590K	U		3,119	114K	620K	2,188K	Y	110.21	
aso.bug3	445	16,024	113K	5,016K	16,162K	Ν	9,034	4,161	167K	1,406K	4,774K	Y	215.02	
aso.bug4	444	16,055	108K	4,729K	$15,\!141 \mathrm{K}$	Ν	6,016	4,148	161K	$1,\!271 { m K}$	$4,\!295K$	Ν	168.22	
aso.ok2	443	$16,\!056$	109K	4,734K	15,159K	U		4,149	162K	1,289K	4,360K	Y	200.25	
Table 2. Experimental results of concurrent Turing Machine. H = # of hyper-periods, OL and SL = # lines of code in the original C program and the generated sequentialization S, respectively; GL = size of the GOTO program produced by CBMC; Var and Clause = # variables and clauses in the SAT instance, respectively; S = verification result – 'Y' for SAFE, 'N' for UNSAFE, and 'U' for timeout (85,000s); Time = verification time in sec.

					MONC	SEQ	HARMONICSEQ								
Name				SAT Size			S	Time		SAT Size				Time	
	Η	OL	SL	GL	Var	Clause		(sec)	SL	GL	Var	Clause		(sec)	
ctm.ok1	4	613	13K	121K	2,737K	8,774K	Y	44,781	7K	111K	1,063K	$3,\!497\mathrm{K}$	Y	93.39	
ctm.ok2	4	610	13K	119K	2,728K	8,738K	Y	21,804	7K	109K	$1,\!055K$	$3,\!467\mathrm{K}$	Υ	87.60	
ctm.bug2	4	611	13K	118K	2,707 K	$8,\!674K$	N	2,281	7K	108K	1,047 K	$3,\!441 { m K}$	Ν	86.18	
ctm.ok3	6	612	20K	222K	$6,\!276\mathrm{K}$	$20,163 \mathrm{K}$	U		7K	171K	1,667K	5,566K	Y	243.76	
ctm.bug3	6	612	20K	214K	$5,\!914K$	19,044 K	Ν	84,625	7K	165K	1,609K	$5,\!383\mathrm{K}$	Ν	248.65	
ctm.ok4	8	613	29K	333K	$10,\!390 { m K}$	33,550 K	U		7K	222K	$2{,}178\mathrm{K}$	$7,\!417\mathrm{K}$	Y	534.38	

Table 2. Experimental results of concurrent Turing Machine. H = # of hyper-periods, OL and SL = # lines of code in the original C program and the generated sequentialization S, respectively; GL = size of the GOTO program produced by CBMC; Var and Clause = # variables and clauses in the SAT instance, respectively; S = verification result – 'Y' for SAFE, 'N' for UNSAFE, and 'U' for timeout (85,000s); Time = verification time in sec.

					MONC	SEQ	HARMONICSEQ								
Name				SAT Size			S	Time		SAT Size				Time	
	Η	OL	SL	GL	Var	Clause		(sec)	SL	GL	Var	Clause		(sec)	
ctm.ok1	4	613	13K	121K	2,737K	8,774K	Y	44,781	7K	111K	1,063K	$3,\!497\mathrm{K}$	Y	93.39	
ctm.ok2	4	610	13K	119K	2,728K	8,738K	Y	$ 21,\!804 $	7K	109K	1,055K	$3,467 \mathrm{K}$	Y	87.60	
ctm.bug2	4	611	13K	118K	2,707 K	$8,\!674K$	Ν	2,281	7K	108K	1,047K	$3,\!441 { m K}$	Ν	86.18	
ctm.ok3	6	612	20K	222K	$6,\!276K$	20,163K	U		7K	171K	1,667K	5,566K	Y	243.76	
ctm.bug3	6	612	20K	214K	$5,914 \mathrm{K}$	19,044K	Ν	84,625	7K	165K	1,609K	$5,383 \mathrm{K}$	Ν	248.65	
ctm.ok4	8	613	29K	333K	$10,\!390 { m K}$	33,550K	U		$7\mathrm{K}$	222K	$2,\!178\mathrm{K}$	$7,\!417\mathrm{K}$	Y	534.38	

Table 2. Experimental results of concurrent Turing Machine. H = # of hyper-periods, OL and SL = # lines of code in the original C program and the generated sequentialization S, respectively; GL = size of the GOTO program produced by CBMC; Var and Clause = # variables and clauses in the SAT instance, respectively; S = verification result – 'Y' for SAFE, 'N' for UNSAFE, and 'U' for timeout (85,000s); Time = verification time in sec.

					MONC	SEQ			HARMONICSEQ										
Name				SAT Size			S	Time		SAT Size			S Time						\nearrow
	H	OL	SL	GL	Var	Clause		(sec)	SL	GL	Var	Clause		(sec)			480x	Faster	!)
ctm.ok1	4	613	13K	121K	2,737K	8,774K	Y	44,781	7K	1111K	1,063K	3,497K	Y	93.39	کے	~			
ctm.ok2	4	610	13K	119K	2,728K	8,738K	Y	21,804	7K	109K	$1,\!055K$	3,467K	Y	87.60					
ctm.bug2	4	611	13K	118K	2,707 K	$8,\!674K$	N	2,281	7K	108K	1,047K	3,441K	N	86.18					
ctm.ok3	6	612	20K	222K	$6,\!276K$	20,163K	U		7K	171K	$1,\!667K$	5,566K	Y	243.76					
ctm.bug3	6	612	20K	214K	$5,\!914K$	19,044K	N	84,625	7K	165K	$1,\!609K$	5,383K	N	248.65					
ctm.ok4	8	613	29K	333K	$10,\!390 { m K}$	$33,\!550K$	U		7K	222K	$2{,}178\mathrm{K}$	7,417K	Y	534.38					

Thank you