
Compositional Sequentialization
of Periodic Programs

Soonho Kong
soonhok@cs.cmu.edu

Carnegie Mellon University

*

Work with Sagar Chaki(SEI/CMU), Arie Gurfinkel(SEI/CMU), and Ofer Strichman(Technion - Israel Institute of Technology)*

mailto:soonhok@cs.cmu.edu
mailto:soonhok@cs.cmu.edu

Target of Verification:

Periodic Programs

⌧ = (I, T, P, C,A)Task

⌧ = (I, T, P, C,A)Task

Higher Priority Task

Low Priority Task

Priority

⌧ = (I, T, P, C,A)Task

Higher Priority Task

Low Priority Task

TaskBody

Loop-free
code (C)

⌧ = (I, T, P, C,A)Task

Higher Priority Task

Low Priority Task

TaskBody

Loop-free
code (C)

⌧ = (I, T, P, C,A)Task

Higher Priority Task

Low Priority Task

Period

Time

⌧ = (I, T, P, C,A)Task

Higher Priority Task

Low Priority Task

WCET

Time

⌧ = (I, T, P, C,A)Task

Higher Priority Task

Low Priority Task

Arrival
Time

Time

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

Higher&lower-
priority jobs

arrived!

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

Higher-priority job
picked!

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

Lower-priority job
is executed later.

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

Higher-priority job
arrived!

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

Higher-priority job
preempts

lower-priority job!

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

Lower-priority job
resumes later.

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

Preemptive Fixed Priority-based Scheduling

Higher Priority Task

Low Priority Task

Time

1 Hyper-Period

Case Study:

Concurrent Turing Machine

Controller Task
Priority: 1(Lowest)

Period 500ms | WCET: 440ms

1. Calibrate Sensor
2. Command other tasks

Writer Task
Priority: 4

Period 25ms | WCET: < 1ms

Flip bits

Reader Task
Priority: 3

Period 50ms | WCET: < 1ms

Read bits using NXT-colorsensor

TapeMover Task
Priority: 2

Period 100ms | WCET: < 1ms

Move the tape (left or right)

Isn’t LEGO Mindstorms just a TOY?

No, it runs OSEK/VDX-compatible RTOS.
Open Systems and their Interfaces for the Electronics in Motor Vehicles

 a standard software architecture for the various electronic control units (ECUs) throughout a car

DEMO

Unary Addition
2 + 3 = ?

http://www.youtube.com/watch?v=teDyd0d5M4o

http://www.youtube.com/watch?v=teDyd0d5M4o
http://www.youtube.com/watch?v=teDyd0d5M4o

Properties

Property 1: When a bit is being read, all the motors should stop.

Property 2: When writer flips a bit, the tape motor and read motor should stop.

Property 3: When tape moves, the writer motor and read motor should stop.

Property 4: When a bit is being read, the sensor should be on Green mode

Property 5: The sensor mode must be switched in Controller Task, not in Reader Task

Properties

Property 1: When a bit is being read, all the motors should stop.

Property 2: When writer flips a bit, the tape motor and read motor should stop.

Property 3: When tape moves, the writer motor and read motor should stop.

Property 4: When a bit is being read, the sensor should be on Green mode

Property 5: The sensor mode must be switched in Controller Task, not in Reader Task

Properties

Property 1: When a bit is being read, all the motors should stop.

Property 2: When writer flips a bit, the tape motor and read motor should stop.

Property 3: When tape moves, the writer motor and read motor should stop.

Property 4: When a bit is being read, the sensor should be on Green mode

Property 5: The sensor mode must be switched in Controller Task, not in Reader Task

Properties

Property 1: When a bit is being read, all the motors should stop.

Property 2: When writer flips a bit, the tape motor and read motor should stop.

Property 3: When tape moves, the writer motor and read motor should stop.

Property 4: When a bit is being read, the sensor should be on Green mode

Property 5: The sensor mode must be switched in Controller Task, not in Reader Task

Properties

Property 1: When a bit is being read, all the motors should stop.

Property 2: When writer flips a bit, the tape motor and read motor should stop.

Property 3: When tape moves, the writer motor and read motor should stop.

Property 4: When a bit is being read, the sensor should be on Green mode

Property 5: The sensor mode must be switched in Controller Task, not in Reader Task

Properties

Property 1: When a bit is being read, all the motors should stop.

Property 2: When writer flips a bit, the tape motor and read motor should stop.

Property 3: When tape moves, the writer motor and read motor should stop.

Property 4: When a bit is being read, the sensor should be on Green mode

Property 5: The sensor mode must be switched in Controller Task, not in Reader Task

Key Idea:

Sequentialization

Off-the-shelf
Sequential Verifier

(ex: CBMC)

Sequentialization

Periodic ProgramC Timebound W

Non-deterministic
Sequential Program S

Safe Unsafe with CEX

Time-bounded Verification of Periodic Programs via Sequentialization

Off-the-shelf
Sequential Verifier

(ex: CBMC)

Sequentialization

Periodic ProgramC Timebound W

Non-deterministic
Sequential Program S

Safe Unsafe with CEX

Time-bounded Verification of Periodic Programs via Sequentialization

Off-the-shelf
Sequential Verifier

(ex: CBMC)

Sequentialization

Periodic ProgramC Timebound W

Non-deterministic
Sequential Program S

Safe Unsafe with CEX

Time-bounded Verification of Periodic Programs via Sequentialization

MonoSeq

CompSeq

HarmonicSeq

FMCAD’11

Off-the-shelf
Sequential Verifier

(ex: CBMC)

Sequentialization

Periodic ProgramC Timebound W

Non-deterministic
Sequential Program S

Safe Unsafe with CEX

Time-bounded Verification of Periodic Programs via Sequentialization

MonoSeq

CompSeq

HarmonicSeq

Submitted to
VMCAI’13

}

Off-the-shelf
Sequential Verifier

(ex: CBMC)

Sequentialization

Periodic ProgramC Timebound W

Non-deterministic
Sequential Program S

Safe Unsafe with CEX

Time-bounded Verification of Periodic Programs via Sequentialization

CEX of C

CEX Visualization

of S

SequentializationMonoSeq

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

SequentializationMonoSeq

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

Exponential Blow-up!

SequentializationMonoSeq

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

Our Approach (MonoSeq):

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Exponential Blow-up!

SequentializationMonoSeq

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

Our Approach (MonoSeq):

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Exponential Blow-up!

Program + Constraints

SequentializationMonoSeq

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

Our Approach (MonoSeq):

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

x:= nondet();
y:= 10;
assume(x > 10);

Ex:

SequentializationMonoSeq

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

Our Approach (MonoSeq):

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Exponential Blow-up!

where R= # of Jobs
O(R)

where R= # of Jobs
O(R2)

Job-bounded Abstraction

Higher Priority Task

Low Priority Task

Time

Job-bounded Abstraction

Higher Priority Task

Low Priority Task

Time

Because we are interested in logical properties,
We abstract the absolute time with relative order of execution

Job-bounded Abstraction

Higher Priority Task

Low Priority Task

Time

We don’t know at which
instruction this preemption occurs.

Because we are interested in logical properties,
We abstract the absolute time with relative order of execution

Job-bounded Abstraction

Higher Priority Task

Low Priority Task

Time

Higher Priority Task

Low Priority Task

Time

Because we are interested in logical properties,
We abstract the absolute time with relative order of execution

We consider an over-approximated
set of thread executions.

(Incomplete)

Partition Execution into Rounds

Observation:
Any execution can be partitioned into scheduling rounds

Higher Priority Task

Low Priority Task

0

1

2 4 6

5

Time
3 3

Partition Execution into Rounds

Observation:
Any execution can be partitioned into scheduling rounds

Higher Priority Task

Low Priority Task

Time

Execution begins
in round 0

0

1

2 4 6

5

3 3

Partition Execution into Rounds

Higher Priority Task

Low Priority Task

Time

Observation:
Any execution can be partitioned into scheduling rounds

0

0

1

2 4 6

5

3 3

A round ends
when a job ends.

Partition Execution into Rounds

Higher Priority Task

Low Priority Task

Time

Observation:
Any execution can be partitioned into scheduling rounds

0 1 2

0

1

2 4 6

5

3 3

Partition Execution into Rounds

Higher Priority Task

Low Priority Task

Time

Observation:
Any execution can be partitioned into scheduling rounds

0 1 2

0

1

2 4 6

5

3 3

Job 3
preempted,
not finished.

Partition Execution into Rounds

Higher Priority Task

Low Priority Task

Time

Observation:
Any execution can be partitioned into scheduling rounds

0 1 2 3

0

1

2 4 6

5

3 3

Job 4 ends.

Partition Execution into Rounds

Higher Priority Task

Low Priority Task

Time

Observation:
Any execution can be partitioned into scheduling rounds

0 1 2 3

0

1

2 4 6

5

3 3

4

Partition Execution into Rounds

Higher Priority Task

Low Priority Task

Time

Observation:
Any execution can be partitioned into scheduling rounds

0 1 2 3

0

1

2 4 6

5

3 3

4 5 6

Partition Execution into Rounds

Observation:
Any execution can be partitioned into scheduling rounds

of Jobs = # of Rounds

Higher Priority Task

Low Priority Task

Time
0 1 2 3

0

1

2 4 6

5

3 3

54 6

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

1. Jobs are sequential:

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

1. Jobs are sequential:

Time
0 1 2 3

3 3

54 6

startRnd = 3 endRnd = 4

O

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

1. Jobs are sequential:

Time
0 1 2 3

3 3

54 6

startRnd = 3 endRnd = 4

Time
0 1 2 3

3

54 6

startRnd = 3endRnd = 0

O

X

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

1. Jobs are sequential:

Time
0 1 2 3

3 3

54 6

Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is
the set of global variables of C; J(t) is the set of jobs of task t; R =

∑

t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)
is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic
value.

1: var rnd, job, endRnd, start[][], end[][]
2: ∀g ∈ G · var g[], vg[]
3: var localAssert[][]

4: function MAIN()
5: SCHEDULEJOBS()
6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE

7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()
13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)
17: if (*) then return FALSE

18: o := rnd
19: rnd := *
20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS()

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)

⇒
(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧ j2 ≥ PBt2
t1
∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)

⇒
end[t2][j2 − PBt2

t1
] < start[t1][j1])

27: function T̂t()
Same as Tt, but

each statement ‘st’ is replaced with:
28: CS(t) ; st[g ← g[rnd]],

and each ‘assert(e)’ is replaced with:
29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring
multiple locks and releasing them in an arbitrary order. We
check that the priority of the locks is assigned correctly (i.e.,
acquiring a lock must never lower the dynamic priority) by
adding an assertion that checks this in line 8 of GETLOCK.
Correctness. We need to show that CS and SCHEDULEJOBS

in Alg. 1, which are based on the base priorities, are still
correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by
SCHEDULEJOBS cover the legitimate schedules in the presence
of priority locks. This is indeed the case because priority-
locks cannot lead to priority inversion – a situation in which
a job with a low base priority preempts a job with a high
base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt
j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,
only delay the start time of j2, not preempt it. Thus, it is not
necessary to explore schedules in which a low-base-priority
job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this
constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,
however, because it corresponds to a preemption of a high-
priority job j1 by a lower-priority job j2, it is accordingly
blocked by the assume statement on line 3 of T̂t-WRAPPER.
Finally, since j1 can raise its priority, it seems that we also

need the opposite constraint (i.e., that j2 does not resume
control in a round in which j1 is still active). However, there
is no need for this constraint because SCHEDULEJOBS does
not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-
tioning: two computations are in the same class iff they reach
the same observable states. Thus, for verification, it suffices
to examine only one representative from each class. This is
known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model
Checking (e.g., [19]). Recently, it has been shown to be

startRnd = 3 endRnd = 4

Time
0 1 2 3

3

54 6

startRnd = 3endRnd = 0

O

X

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

2. Jobs are well-nested:

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

2. Jobs are well-nested:

O

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

2. Jobs are well-nested:

startRnd = 3 endRnd = 4 O

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

2. Jobs are well-nested:

startRnd = 3 endRnd = 4

startRnd = 3 endRnd = 3

O

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

2. Jobs are well-nested:

startRnd = 3 endRnd = 4

startRnd = 3 endRnd = 3

O

X

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

2. Jobs are well-nested:

startRnd = 3 endRnd = 4

startRnd = 3 endRnd = 3

O

X

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

startRnd = 3 endRnd = 4

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

2. Jobs are well-nested:

startRnd = 3 endRnd = 4

startRnd = 3 endRnd = 3

O

X

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

startRnd = 3 endRnd = 4

startRnd = 1 endRnd = 3

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

2. Jobs are well-nested:

startRnd = 3 endRnd = 4

startRnd = 3 endRnd = 3

O

X

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

startRnd = 3 endRnd = 4

startRnd = 1 endRnd = 3

This preemption is not possible
because of priorities!

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

2. Jobs are well-nested:

startRnd = 3 endRnd = 4

startRnd = 3 endRnd = 3

O

X

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

startRnd = 3 endRnd = 4

startRnd = 1 endRnd = 3

High priority job is not well-nested!

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

2. Jobs are well-nested:
Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is
the set of global variables of C; J(t) is the set of jobs of task t; R =

∑

t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)
is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic
value.

1: var rnd, job, endRnd, start[][], end[][]
2: ∀g ∈ G · var g[], vg[]
3: var localAssert[][]

4: function MAIN()
5: SCHEDULEJOBS()
6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE

7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()
13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)
17: if (*) then return FALSE

18: o := rnd
19: rnd := *
20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS()

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)

⇒
(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧ j2 ≥ PBt2
t1
∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)

⇒
end[t2][j2 − PBt2

t1
] < start[t1][j1])

27: function T̂t()
Same as Tt, but

each statement ‘st’ is replaced with:
28: CS(t) ; st[g ← g[rnd]],

and each ‘assert(e)’ is replaced with:
29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring
multiple locks and releasing them in an arbitrary order. We
check that the priority of the locks is assigned correctly (i.e.,
acquiring a lock must never lower the dynamic priority) by
adding an assertion that checks this in line 8 of GETLOCK.

Correctness. We need to show that CS and SCHEDULEJOBS

in Alg. 1, which are based on the base priorities, are still
correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by
SCHEDULEJOBS cover the legitimate schedules in the presence
of priority locks. This is indeed the case because priority-
locks cannot lead to priority inversion – a situation in which
a job with a low base priority preempts a job with a high
base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt
j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,
only delay the start time of j2, not preempt it. Thus, it is not
necessary to explore schedules in which a low-base-priority
job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this
constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,
however, because it corresponds to a preemption of a high-
priority job j1 by a lower-priority job j2, it is accordingly
blocked by the assume statement on line 3 of T̂t-WRAPPER.

Finally, since j1 can raise its priority, it seems that we also
need the opposite constraint (i.e., that j2 does not resume
control in a round in which j1 is still active). However, there
is no need for this constraint because SCHEDULEJOBS does
not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-
tioning: two computations are in the same class iff they reach
the same observable states. Thus, for verification, it suffices
to examine only one representative from each class. This is
known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model
Checking (e.g., [19]). Recently, it has been shown to be

Higher Priority Task

Low Priority Task

Time
0 1 2 3 54 6

startRnd = 3 endRnd = 4

startRnd = 3 endRnd = 3

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

3. Jobs respect preemption bounds:

PBt2
t1

= Upper bound on the number of times can preempt .t1 t2

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

3. Jobs respect preemption bounds:

PBt2
t1

= Upper bound on the number of times can preempt .t1 t2
RMA(Rate Monotonic Analysis)

defines it

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time

3. Jobs respect preemption bounds:

O

PBt2
t1

= Upper bound on the number of times can preempt .t1 t2

5 6 7 8 109 11 12

Assume = 2PBt2
t1

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time

3. Jobs respect preemption bounds:

O

PBt2
t1

= Upper bound on the number of times can preempt .t1 t2

5 6 7 8 109 11 12

Higher Priority Task

Low Priority Task

Time
5 6 7 8 109 11 12

Assume = 2PBt2
t1

X

Not possible!

Add constraints to enforce legal job scheduling

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time

3. Jobs respect preemption bounds:

PBt2
t1

= Upper bound on the number of times can preempt .t1 t2

5 6 7 8 109 11 12

Assume = 2PBt2
t1

Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is
the set of global variables of C; J(t) is the set of jobs of task t; R =

∑

t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)
is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic
value.

1: var rnd, job, endRnd, start[][], end[][]
2: ∀g ∈ G · var g[], vg[]
3: var localAssert[][]

4: function MAIN()
5: SCHEDULEJOBS()
6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE

7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()
13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)
17: if (*) then return FALSE

18: o := rnd
19: rnd := *
20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS()

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)

⇒
(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧ j2 ≥ PBt2
t1
∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)

⇒
end[t2][j2 − PBt2

t1
] < start[t1][j1])

27: function T̂t()
Same as Tt, but

each statement ‘st’ is replaced with:
28: CS(t) ; st[g ← g[rnd]],

and each ‘assert(e)’ is replaced with:
29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring
multiple locks and releasing them in an arbitrary order. We
check that the priority of the locks is assigned correctly (i.e.,
acquiring a lock must never lower the dynamic priority) by
adding an assertion that checks this in line 8 of GETLOCK.
Correctness. We need to show that CS and SCHEDULEJOBS

in Alg. 1, which are based on the base priorities, are still
correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by
SCHEDULEJOBS cover the legitimate schedules in the presence
of priority locks. This is indeed the case because priority-
locks cannot lead to priority inversion – a situation in which
a job with a low base priority preempts a job with a high
base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt
j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,
only delay the start time of j2, not preempt it. Thus, it is not
necessary to explore schedules in which a low-base-priority
job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this
constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,
however, because it corresponds to a preemption of a high-
priority job j1 by a lower-priority job j2, it is accordingly
blocked by the assume statement on line 3 of T̂t-WRAPPER.
Finally, since j1 can raise its priority, it seems that we also

need the opposite constraint (i.e., that j2 does not resume
control in a round in which j1 is still active). However, there
is no need for this constraint because SCHEDULEJOBS does
not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-
tioning: two computations are in the same class iff they reach
the same observable states. Thus, for verification, it suffices
to examine only one representative from each class. This is
known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model
Checking (e.g., [19]). Recently, it has been shown to be

j2j2 � PBt2
t1

j1

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3

0

1

2 4 6

5

3 3

54 6

Sequential Execution

Replace accesses to global variable g with g[rnd]

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3

0

1

2 4 6

5

3 3

54 6

Sequential Execution

Replace accesses to global variable g with g[rnd]

x := y + g; .

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3

0

1

2 4 6

5

3 3

54 6

Sequential Execution

Replace accesses to global variable g with g[rnd]

x := y + g; .

x := y + g[rnd];

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3

0

1

2 4 6

5

3 3

54 6

Sequential Execution

Replace accesses to global variable g with g[rnd]

x := y + g; .

x := y + g[rnd];

g

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3

0

1

2 4 6

5

3 3

54 6

Sequential Execution

Replace accesses to global variable g with g[rnd]

x := y + g; .

x := y + g[rnd];

g[3]

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3

0

1

2 4 6

5

3 3

54 6

Sequential Execution

Add non-deterministic context-switching to statements

x := y + g; .

CS(); x := y + g[rnd];

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3

0

1

2 4 6

5

3 3

54 6

Sequential Execution

Add non-deterministic context-switching to statements

x := y + g; .

CS(); x := y + g[rnd];

Partial Order Reduction
We only insert CS() when g[rnd] is read/written!

Guess non-deterministic initial value of each global in each round.

SequentializationMonoSeq

Higher Priority Task

Low Priority Task

Time
0 1 2 3

0

1

2 4 6

5

3 3

54 6

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3

0

1

2 4 6

5

3 3

54 6

Guess non-deterministic initial value of each global in each round.

SequentializationMonoSeq

g[2]

g[3]

g[4]

g[5]

g[6]

g[1]

g[0]

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

3

g[3]

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

3

g[3]

Sequential Execution

Context-Switch!

Context-Switch!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

3 3

g[3] g[4]

Sequential Execution

Context-Switch!

Context-Switch!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

1

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

3 3 1

g[3] g[1]g[4]

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

1

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

5

3 3 1 5

g[3] g[1] g[5]g[4]

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1 5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

3 3 1 5 0

g[3] g[1] g[5]g[4] g[0]

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

3 3 1 5 0 2

g[3] g[1] g[5]g[4] g[0] g[2]

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4

3 3 1 5 0 2 4

g[3] g[1] g[5]g[4] g[0] g[2] g[3]

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4

3 3 1 5 0 2 4

g[3] g[1] g[5]g[4] g[0] g[2] g[3]

This g[3] has been updated!

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4

3 3 1 5 0 2 4

g[3] g[1] g[5]g[4] g[0] g[2] g[3]

g[3] was updated!

updated g[3] is used here!

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

3 3 1 5 0 2 4 6

g[3] g[1] g[5]g[4] g[0] g[2] g[3] g[6]

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

3 3 1 5 0 2 4 6

g[3] g[1] g[5]g[4] g[0] g[2] g[3] g[6]

Constraint the value of global variables g[]s to respect the order of execution

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

Constraint the value of global variables g[]s to respect the order of execution

Sequential Execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

3 3 1 5 0 2 4 6

g[3] g[1] g[5]g[4] g[0] g[2] g[3] g[6]

Sequential Execution

Constraint the value of global variables g[]s to respect the order of execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

3 3 1 5 0 2 4 6

g[3] g[1] g[5]g[4] g[0] g[2] g[3] g[6]

Sequential Execution

Constraint the value of global variables g[]s to respect the order of execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

3 3 1 5 0 2 4 6

g[3] g[1] g[5]g[4] g[0] g[2] g[3] g[6]

Sequential Execution

Constraint the value of global variables g[]s to respect the order of execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

3 3 1 5 0 2 4 6

g[3] g[1] g[5]g[4] g[0] g[2] g[3] g[6]

Sequential Execution

Constraint the value of global variables g[]s to respect the order of execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

3 3 1 5 0 2 4 6

g[3] g[1] g[5]g[4] g[0] g[2] g[3] g[6]

Sequential Execution

Constraint the value of global variables g[]s to respect the order of execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

3 3 1 5 0 2 4 6

g[3] g[1] g[5]g[4] g[0] g[2] g[3] g[6]

Sequential Execution

Constraint the value of global variables g[]s to respect the order of execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

Sequential Execution

Save assertions and check them at the end of execution.

Constraint the value of global variables g[]s to respect the order of execution

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3

We cannot check this
assertion at this time!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3 3

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

1

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3 3 1

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

1 5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3 3 1 5

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1 5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3 3 1 5 0

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3 3 1 5 0 2

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3 3 1 5 0 2 4

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3 3 1 5 0 2 4

Now, it’s sound to check
this assertion!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3 3 1 5 0 2 4 6

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

SequentializationMonoSeq

Execute Task Body, from lower priority task to higher priority task

Guess non-deterministic initial value of each global in each round.

4 6

Constraint the value of global variables g[]s to exclude infeasible execution

Sequential Execution

Save assertions and check them at the end of execution.

3 3 1 5 0 2 4 6

We check it at this time.
It’s LAZY checking.

Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is
the set of global variables of C; J(t) is the set of jobs of task t; R =

∑

t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)
is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic
value.

1: var rnd, job, endRnd, start[][], end[][]
2: ∀g ∈ G · var g[], vg[]
3: var localAssert[][]

4: function MAIN()
5: SCHEDULEJOBS()
6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE

7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()
13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)
17: if (*) then return FALSE

18: o := rnd
19: rnd := *
20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS()

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)

⇒
(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧ j2 ≥ PBt2
t1
∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)

⇒
end[t2][j2 − PBt2

t1
] < start[t1][j1])

27: function T̂t()
Same as Tt, but

each statement ‘st’ is replaced with:
28: CS(t) ; st[g ← g[rnd]],

and each ‘assert(e)’ is replaced with:
29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring
multiple locks and releasing them in an arbitrary order. We
check that the priority of the locks is assigned correctly (i.e.,
acquiring a lock must never lower the dynamic priority) by
adding an assertion that checks this in line 8 of GETLOCK.
Correctness. We need to show that CS and SCHEDULEJOBS

in Alg. 1, which are based on the base priorities, are still
correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by
SCHEDULEJOBS cover the legitimate schedules in the presence
of priority locks. This is indeed the case because priority-
locks cannot lead to priority inversion – a situation in which
a job with a low base priority preempts a job with a high
base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt
j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,
only delay the start time of j2, not preempt it. Thus, it is not
necessary to explore schedules in which a low-base-priority
job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this
constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,
however, because it corresponds to a preemption of a high-
priority job j1 by a lower-priority job j2, it is accordingly
blocked by the assume statement on line 3 of T̂t-WRAPPER.
Finally, since j1 can raise its priority, it seems that we also

need the opposite constraint (i.e., that j2 does not resume
control in a round in which j1 is still active). However, there
is no need for this constraint because SCHEDULEJOBS does
not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-
tioning: two computations are in the same class iff they reach
the same observable states. Thus, for verification, it suffices
to examine only one representative from each class. This is
known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model
Checking (e.g., [19]). Recently, it has been shown to be

MonoSeq

Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is
the set of global variables of C; J(t) is the set of jobs of task t; R =

∑

t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)
is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic
value.

1: var rnd, job, endRnd, start[][], end[][]
2: ∀g ∈ G · var g[], vg[]
3: var localAssert[][]

4: function MAIN()
5: SCHEDULEJOBS()
6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE

7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()
13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)
17: if (*) then return FALSE

18: o := rnd
19: rnd := *
20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS()

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)

⇒
(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧ j2 ≥ PBt2
t1
∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)

⇒
end[t2][j2 − PBt2

t1
] < start[t1][j1])

27: function T̂t()
Same as Tt, but

each statement ‘st’ is replaced with:
28: CS(t) ; st[g ← g[rnd]],

and each ‘assert(e)’ is replaced with:
29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring
multiple locks and releasing them in an arbitrary order. We
check that the priority of the locks is assigned correctly (i.e.,
acquiring a lock must never lower the dynamic priority) by
adding an assertion that checks this in line 8 of GETLOCK.
Correctness. We need to show that CS and SCHEDULEJOBS

in Alg. 1, which are based on the base priorities, are still
correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by
SCHEDULEJOBS cover the legitimate schedules in the presence
of priority locks. This is indeed the case because priority-
locks cannot lead to priority inversion – a situation in which
a job with a low base priority preempts a job with a high
base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt
j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,
only delay the start time of j2, not preempt it. Thus, it is not
necessary to explore schedules in which a low-base-priority
job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this
constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,
however, because it corresponds to a preemption of a high-
priority job j1 by a lower-priority job j2, it is accordingly
blocked by the assume statement on line 3 of T̂t-WRAPPER.
Finally, since j1 can raise its priority, it seems that we also

need the opposite constraint (i.e., that j2 does not resume
control in a round in which j1 is still active). However, there
is no need for this constraint because SCHEDULEJOBS does
not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-
tioning: two computations are in the same class iff they reach
the same observable states. Thus, for verification, it suffices
to examine only one representative from each class. This is
known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model
Checking (e.g., [19]). Recently, it has been shown to be

MonoSeq

Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is
the set of global variables of C; J(t) is the set of jobs of task t; R =

∑

t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)
is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic
value.

1: var rnd, job, endRnd, start[][], end[][]
2: ∀g ∈ G · var g[], vg[]
3: var localAssert[][]

4: function MAIN()
5: SCHEDULEJOBS()
6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE

7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()
13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)
17: if (*) then return FALSE

18: o := rnd
19: rnd := *
20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS()

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)

⇒
(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧ j2 ≥ PBt2
t1
∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)

⇒
end[t2][j2 − PBt2

t1
] < start[t1][j1])

27: function T̂t()
Same as Tt, but

each statement ‘st’ is replaced with:
28: CS(t) ; st[g ← g[rnd]],

and each ‘assert(e)’ is replaced with:
29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring
multiple locks and releasing them in an arbitrary order. We
check that the priority of the locks is assigned correctly (i.e.,
acquiring a lock must never lower the dynamic priority) by
adding an assertion that checks this in line 8 of GETLOCK.
Correctness. We need to show that CS and SCHEDULEJOBS

in Alg. 1, which are based on the base priorities, are still
correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by
SCHEDULEJOBS cover the legitimate schedules in the presence
of priority locks. This is indeed the case because priority-
locks cannot lead to priority inversion – a situation in which
a job with a low base priority preempts a job with a high
base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt
j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,
only delay the start time of j2, not preempt it. Thus, it is not
necessary to explore schedules in which a low-base-priority
job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this
constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,
however, because it corresponds to a preemption of a high-
priority job j1 by a lower-priority job j2, it is accordingly
blocked by the assume statement on line 3 of T̂t-WRAPPER.
Finally, since j1 can raise its priority, it seems that we also

need the opposite constraint (i.e., that j2 does not resume
control in a round in which j1 is still active). However, there
is no need for this constraint because SCHEDULEJOBS does
not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-
tioning: two computations are in the same class iff they reach
the same observable states. Thus, for verification, it suffices
to examine only one representative from each class. This is
known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model
Checking (e.g., [19]). Recently, it has been shown to be

MonoSeq

Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is
the set of global variables of C; J(t) is the set of jobs of task t; R =

∑

t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)
is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic
value.

1: var rnd, job, endRnd, start[][], end[][]
2: ∀g ∈ G · var g[], vg[]
3: var localAssert[][]

4: function MAIN()
5: SCHEDULEJOBS()
6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE

7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()
13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)
17: if (*) then return FALSE

18: o := rnd
19: rnd := *
20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS()

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)

⇒
(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧ j2 ≥ PBt2
t1
∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)

⇒
end[t2][j2 − PBt2

t1
] < start[t1][j1])

27: function T̂t()
Same as Tt, but

each statement ‘st’ is replaced with:
28: CS(t) ; st[g ← g[rnd]],

and each ‘assert(e)’ is replaced with:
29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring
multiple locks and releasing them in an arbitrary order. We
check that the priority of the locks is assigned correctly (i.e.,
acquiring a lock must never lower the dynamic priority) by
adding an assertion that checks this in line 8 of GETLOCK.
Correctness. We need to show that CS and SCHEDULEJOBS

in Alg. 1, which are based on the base priorities, are still
correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by
SCHEDULEJOBS cover the legitimate schedules in the presence
of priority locks. This is indeed the case because priority-
locks cannot lead to priority inversion – a situation in which
a job with a low base priority preempts a job with a high
base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt
j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,
only delay the start time of j2, not preempt it. Thus, it is not
necessary to explore schedules in which a low-base-priority
job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this
constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,
however, because it corresponds to a preemption of a high-
priority job j1 by a lower-priority job j2, it is accordingly
blocked by the assume statement on line 3 of T̂t-WRAPPER.
Finally, since j1 can raise its priority, it seems that we also

need the opposite constraint (i.e., that j2 does not resume
control in a round in which j1 is still active). However, there
is no need for this constraint because SCHEDULEJOBS does
not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-
tioning: two computations are in the same class iff they reach
the same observable states. Thus, for verification, it suffices
to examine only one representative from each class. This is
known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model
Checking (e.g., [19]). Recently, it has been shown to be

MonoSeq

Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is
the set of global variables of C; J(t) is the set of jobs of task t; R =

∑

t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)
is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic
value.

1: var rnd, job, endRnd, start[][], end[][]
2: ∀g ∈ G · var g[], vg[]
3: var localAssert[][]

4: function MAIN()
5: SCHEDULEJOBS()
6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE

7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()
13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)
17: if (*) then return FALSE

18: o := rnd
19: rnd := *
20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS()

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)

⇒
(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧ j2 ≥ PBt2
t1
∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)

⇒
end[t2][j2 − PBt2

t1
] < start[t1][j1])

27: function T̂t()
Same as Tt, but

each statement ‘st’ is replaced with:
28: CS(t) ; st[g ← g[rnd]],

and each ‘assert(e)’ is replaced with:
29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring
multiple locks and releasing them in an arbitrary order. We
check that the priority of the locks is assigned correctly (i.e.,
acquiring a lock must never lower the dynamic priority) by
adding an assertion that checks this in line 8 of GETLOCK.
Correctness. We need to show that CS and SCHEDULEJOBS

in Alg. 1, which are based on the base priorities, are still
correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by
SCHEDULEJOBS cover the legitimate schedules in the presence
of priority locks. This is indeed the case because priority-
locks cannot lead to priority inversion – a situation in which
a job with a low base priority preempts a job with a high
base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt
j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,
only delay the start time of j2, not preempt it. Thus, it is not
necessary to explore schedules in which a low-base-priority
job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this
constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,
however, because it corresponds to a preemption of a high-
priority job j1 by a lower-priority job j2, it is accordingly
blocked by the assume statement on line 3 of T̂t-WRAPPER.
Finally, since j1 can raise its priority, it seems that we also

need the opposite constraint (i.e., that j2 does not resume
control in a round in which j1 is still active). However, there
is no need for this constraint because SCHEDULEJOBS does
not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-
tioning: two computations are in the same class iff they reach
the same observable states. Thus, for verification, it suffices
to examine only one representative from each class. This is
known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model
Checking (e.g., [19]). Recently, it has been shown to be

MonoSeq

It also supports two types of
common locking mechanisms

by encoding them as constraints:

1. Preemption Lock
2. Priority Ceiling Lock

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

1 Hyper Period 2 Hyper Period

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3

1 Hyper Period 2 Hyper Period

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 10 10

1 Hyper Period 2 Hyper Period

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 510 10 8 12

1 Hyper Period 2 Hyper Period

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 5 0 2 4 610 10 8 12 7 9 11 13

1 Hyper Period 2 Hyper Period

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 5 0 2 4 610 10 8 12 7 9 11 13

1 Hyper Period 2 Hyper Period

We check it at this time.
It’s LAZY checking.

We check them at this time!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

1 Hyper Period 2 Hyper Period

We should consider “Hyper-period”!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3

1 Hyper Period 2 Hyper Period

We should consider “Hyper-period”!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 5

1 Hyper Period 2 Hyper Period

We should consider “Hyper-period”!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 5 0 2 4 6

1 Hyper Period 2 Hyper Period

We should consider “Hyper-period”!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 5 0 2 4 6

1 Hyper Period 2 Hyper Period

We should consider “Hyper-period”!

Check this assertion!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 5 0 2 4 6 10 10

1 Hyper Period 2 Hyper Period

We should consider “Hyper-period”!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 5 0 2 4 6 10 10 8 12

1 Hyper Period 2 Hyper Period

We should consider “Hyper-period”!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 5 0 2 4 6 10 10 8 12 7 9 11 13

1 Hyper Period 2 Hyper Period

We should consider “Hyper-period”!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 5 0 2 4 6 10 10 8 12 7 9 11 13

1 Hyper Period 2 Hyper Period

We should consider “Hyper-period”!

Check this assertion!

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4 6

Observations

7

8

9

12

10 10

11 13

7 8 9 10 11 12 13

3 3 1 5 0 2 4 6 10 10 8 12 7 9 11 13

1 Hyper Period 2 Hyper Period

We should consider “Hyper-period”!

We may detect the violation of
this assertion earlier!

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 63 3 1 5 0 2 4 6

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Can we do better?

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation@

j1 @ j2

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation

{ j1 ends before j2 starts j1 j2

@

j1 @ j2

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation

{ j1 ends before j2 starts j1 j2

j1 can be preempted by j2

@

j1 @ j2

j1 j1

j2
or

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation

{ j1 ends before j2 starts j1 j2

j1 can be preempted by j2

@

j1 @ j2

j1 j1

j2
or

0

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation

{ j1 ends before j2 starts j1 j2

j1 can be preempted by j2

@

j1 @ j2

j1 j1

j2
or

10

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation

{ j1 ends before j2 starts j1 j2

j1 can be preempted by j2

@

j1 @ j2

j1 j1

j2
or

10 2

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation

{ j1 ends before j2 starts j1 j2

j1 can be preempted by j2

@

j1 @ j2

j1 j1

j2
or

3 310 2

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation

{ j1 ends before j2 starts j1 j2

j1 can be preempted by j2

@

j1 @ j2

j1 j1

j2
or

3 310 2 4

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation

{ j1 ends before j2 starts j1 j2

j1 can be preempted by j2

@

j1 @ j2

j1 j1

j2
or

3 310 2 4

6

Check this assertion!
(Eager Checking)

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation

{ j1 ends before j2 starts j1 j2

j1 can be preempted by j2

@

j1 @ j2

j1 j1

j2
or

3 31 50 2 4

6

Observations

We executed jobs in the order of their priorities.

Higher Priority Task

Low Priority Task

Time
0 1 2 3 4 5 6

0

1

2

5

3 3

4

3 3 1 5 0 2 4 6

Order jobs by relation

{ j1 ends before j2 starts j1 j2

j1 can be preempted by j2

@

j1 @ j2

j1 j1

j2
or

3 31 50 2 4 6

6

Algorithm 1 The sequentialization S of the time-bounded periodic program
CH. Notation: J is the set of all jobs; G is the set of global variables of C; ig is
the initial value of g according to C; ‘⇤’ is a non-deterministic value.

1: var rnd, start[], end[], localAssert[]
2: 8g 2 G ⇧ var g[], vg[]

3: function main()
4: 8g 2 G ⇧ g[0] := ig

5: hyperPeriod()

6: function hyperPeriod()
7: scheduleJobs()

8:
8g 2 G ⇧ 8r 2 [1, R)⇧

vg[r] := ⇤; g[r] := vg[r]
let the ordering of jobs by @ be
j0 @ j1 @ . . . jR�1

9: runJob(j0); . . . ; runJob(jR�1)

10: function scheduleJobs()

11: 8j 2 J ⇧ start[j] = ⇤; end[j] = ⇤
// Jobs are sequential

12:
8i 2 [0, N) ⇧ 8k 2 [0, Ji) ⇧ assume
(0  start[J(i, k)]  end[J(i, k)] < R)

// Jobs are well-separated
13: 8j1 C j2 ⇧ assume(end[j1] < start[j2])
14: 8j1 " j2 ⇧ assume(start[j1]  start[j2])

// Jobs are well-nested

15:
8j1 " j2 ⇧ assume(start[j2]  end[j1]

=) (start[j2]  end[j2] < end[j1]))

16: function runJob(Job j)
17: localAssert[j] := 1
18: rnd := start[j]
19: T̂ (j)
20: assume(rnd = end[j])
21: if rnd < R� 1 then

22:
8g 2 G ⇧ assume

(g[rnd] = vg[rnd+ 1])

23:
X := {j0 | (j0 = j _ j

0 " j) ^
(8j00 6= j ⇧ j

0 " j00) j

00 @ j)}
24: 8j0 2 X ⇧ assert(localAssert[j0])

25: function T̂ (Job j)
Obtained from Tt by replacing
each statement ‘st’ with:

26: cs(j) ; st[g g[rnd]]
and each ‘assert(e)’ with:

27: localAssert[j] := e

28: function cs(Job j)
29: if (⇤) then return false

30: o := rnd ; rnd := ⇤
31: assume(o < rnd  end[j])

32:
8j0 2 J ⇧ j " j0 =)

assume(rnd  start[j0]_
rnd > end[j0])

33: return true

end[j] by checking that the final value of g in it equals its guessed initial value
in round end[j] + 1. Finally, it checks whether j caused an assertion violation.

Function T̂ (j) is identical to the body of j’s task, except that it uses variable
g[rnd] instead of g and records the argument to its assertion instead of checking
it. This is important because assertions must be checked only after ensuring
consistency of all relevant rounds. Function T̂ (j) also increases value of rnd

non-deterministically (by invoking function cs) to model preemption by higher
priority jobs. As in other work [14], preemption is only allowed before access of
global variables, without losing soundness.

Soundness of compSeq. The state-of-the-art sequentialization for periodic pro-
grams – which we refer to as monoSeq– was developed and shown to be sound
in our prior work [7]. monoSeq first executes all jobs in increasing order of
priority and job position, then ensures round consistency, and finally checks for
assertion violations. In contrast, in the case of compSeq: (1) jobs are serialized
in the order @; (2) the consistency of round end[j] is checked as soon as job j

CompSeq

Algorithm 1 The sequentialization S of the time-bounded periodic program
CH. Notation: J is the set of all jobs; G is the set of global variables of C; ig is
the initial value of g according to C; ‘⇤’ is a non-deterministic value.

1: var rnd, start[], end[], localAssert[]
2: 8g 2 G ⇧ var g[], vg[]

3: function main()
4: 8g 2 G ⇧ g[0] := ig

5: hyperPeriod()

6: function hyperPeriod()
7: scheduleJobs()

8:
8g 2 G ⇧ 8r 2 [1, R)⇧

vg[r] := ⇤; g[r] := vg[r]
let the ordering of jobs by @ be
j0 @ j1 @ . . . jR�1

9: runJob(j0); . . . ; runJob(jR�1)

10: function scheduleJobs()

11: 8j 2 J ⇧ start[j] = ⇤; end[j] = ⇤
// Jobs are sequential

12:
8i 2 [0, N) ⇧ 8k 2 [0, Ji) ⇧ assume
(0  start[J(i, k)]  end[J(i, k)] < R)

// Jobs are well-separated
13: 8j1 C j2 ⇧ assume(end[j1] < start[j2])
14: 8j1 " j2 ⇧ assume(start[j1]  start[j2])

// Jobs are well-nested

15:
8j1 " j2 ⇧ assume(start[j2]  end[j1]

=) (start[j2]  end[j2] < end[j1]))

16: function runJob(Job j)
17: localAssert[j] := 1
18: rnd := start[j]
19: T̂ (j)
20: assume(rnd = end[j])
21: if rnd < R� 1 then

22:
8g 2 G ⇧ assume

(g[rnd] = vg[rnd+ 1])

23:
X := {j0 | (j0 = j _ j

0 " j) ^
(8j00 6= j ⇧ j

0 " j00) j

00 @ j)}
24: 8j0 2 X ⇧ assert(localAssert[j0])

25: function T̂ (Job j)
Obtained from Tt by replacing
each statement ‘st’ with:

26: cs(j) ; st[g g[rnd]]
and each ‘assert(e)’ with:

27: localAssert[j] := e

28: function cs(Job j)
29: if (⇤) then return false

30: o := rnd ; rnd := ⇤
31: assume(o < rnd  end[j])

32:
8j0 2 J ⇧ j " j0 =)

assume(rnd  start[j0]_
rnd > end[j0])

33: return true

end[j] by checking that the final value of g in it equals its guessed initial value
in round end[j] + 1. Finally, it checks whether j caused an assertion violation.

Function T̂ (j) is identical to the body of j’s task, except that it uses variable
g[rnd] instead of g and records the argument to its assertion instead of checking
it. This is important because assertions must be checked only after ensuring
consistency of all relevant rounds. Function T̂ (j) also increases value of rnd

non-deterministically (by invoking function cs) to model preemption by higher
priority jobs. As in other work [14], preemption is only allowed before access of
global variables, without losing soundness.

Soundness of compSeq. The state-of-the-art sequentialization for periodic pro-
grams – which we refer to as monoSeq– was developed and shown to be sound
in our prior work [7]. monoSeq first executes all jobs in increasing order of
priority and job position, then ensures round consistency, and finally checks for
assertion violations. In contrast, in the case of compSeq: (1) jobs are serialized
in the order @; (2) the consistency of round end[j] is checked as soon as job j

CompSeq

Algorithm 1 The sequentialization S of the time-bounded periodic program
CH. Notation: J is the set of all jobs; G is the set of global variables of C; ig is
the initial value of g according to C; ‘⇤’ is a non-deterministic value.

1: var rnd, start[], end[], localAssert[]
2: 8g 2 G ⇧ var g[], vg[]

3: function main()
4: 8g 2 G ⇧ g[0] := ig

5: hyperPeriod()

6: function hyperPeriod()
7: scheduleJobs()

8:
8g 2 G ⇧ 8r 2 [1, R)⇧

vg[r] := ⇤; g[r] := vg[r]
let the ordering of jobs by @ be
j0 @ j1 @ . . . jR�1

9: runJob(j0); . . . ; runJob(jR�1)

10: function scheduleJobs()

11: 8j 2 J ⇧ start[j] = ⇤; end[j] = ⇤
// Jobs are sequential

12:
8i 2 [0, N) ⇧ 8k 2 [0, Ji) ⇧ assume
(0  start[J(i, k)]  end[J(i, k)] < R)

// Jobs are well-separated
13: 8j1 C j2 ⇧ assume(end[j1] < start[j2])
14: 8j1 " j2 ⇧ assume(start[j1]  start[j2])

// Jobs are well-nested

15:
8j1 " j2 ⇧ assume(start[j2]  end[j1]

=) (start[j2]  end[j2] < end[j1]))

16: function runJob(Job j)
17: localAssert[j] := 1
18: rnd := start[j]
19: T̂ (j)
20: assume(rnd = end[j])
21: if rnd < R� 1 then

22:
8g 2 G ⇧ assume

(g[rnd] = vg[rnd+ 1])

23:
X := {j0 | (j0 = j _ j

0 " j) ^
(8j00 6= j ⇧ j

0 " j00) j

00 @ j)}
24: 8j0 2 X ⇧ assert(localAssert[j0])

25: function T̂ (Job j)
Obtained from Tt by replacing
each statement ‘st’ with:

26: cs(j) ; st[g g[rnd]]
and each ‘assert(e)’ with:

27: localAssert[j] := e

28: function cs(Job j)
29: if (⇤) then return false

30: o := rnd ; rnd := ⇤
31: assume(o < rnd  end[j])

32:
8j0 2 J ⇧ j " j0 =)

assume(rnd  start[j0]_
rnd > end[j0])

33: return true

end[j] by checking that the final value of g in it equals its guessed initial value
in round end[j] + 1. Finally, it checks whether j caused an assertion violation.

Function T̂ (j) is identical to the body of j’s task, except that it uses variable
g[rnd] instead of g and records the argument to its assertion instead of checking
it. This is important because assertions must be checked only after ensuring
consistency of all relevant rounds. Function T̂ (j) also increases value of rnd

non-deterministically (by invoking function cs) to model preemption by higher
priority jobs. As in other work [14], preemption is only allowed before access of
global variables, without losing soundness.

Soundness of compSeq. The state-of-the-art sequentialization for periodic pro-
grams – which we refer to as monoSeq– was developed and shown to be sound
in our prior work [7]. monoSeq first executes all jobs in increasing order of
priority and job position, then ensures round consistency, and finally checks for
assertion violations. In contrast, in the case of compSeq: (1) jobs are serialized
in the order @; (2) the consistency of round end[j] is checked as soon as job j

CompSeq

Algorithm 1 The sequentialization S of the time-bounded periodic program
CH. Notation: J is the set of all jobs; G is the set of global variables of C; ig is
the initial value of g according to C; ‘⇤’ is a non-deterministic value.

1: var rnd, start[], end[], localAssert[]
2: 8g 2 G ⇧ var g[], vg[]

3: function main()
4: 8g 2 G ⇧ g[0] := ig

5: hyperPeriod()

6: function hyperPeriod()
7: scheduleJobs()

8:
8g 2 G ⇧ 8r 2 [1, R)⇧

vg[r] := ⇤; g[r] := vg[r]
let the ordering of jobs by @ be
j0 @ j1 @ . . . jR�1

9: runJob(j0); . . . ; runJob(jR�1)

10: function scheduleJobs()

11: 8j 2 J ⇧ start[j] = ⇤; end[j] = ⇤
// Jobs are sequential

12:
8i 2 [0, N) ⇧ 8k 2 [0, Ji) ⇧ assume
(0  start[J(i, k)]  end[J(i, k)] < R)

// Jobs are well-separated
13: 8j1 C j2 ⇧ assume(end[j1] < start[j2])
14: 8j1 " j2 ⇧ assume(start[j1]  start[j2])

// Jobs are well-nested

15:
8j1 " j2 ⇧ assume(start[j2]  end[j1]

=) (start[j2]  end[j2] < end[j1]))

16: function runJob(Job j)
17: localAssert[j] := 1
18: rnd := start[j]
19: T̂ (j)
20: assume(rnd = end[j])
21: if rnd < R� 1 then

22:
8g 2 G ⇧ assume

(g[rnd] = vg[rnd+ 1])

23:
X := {j0 | (j0 = j _ j

0 " j) ^
(8j00 6= j ⇧ j

0 " j00) j

00 @ j)}
24: 8j0 2 X ⇧ assert(localAssert[j0])

25: function T̂ (Job j)
Obtained from Tt by replacing
each statement ‘st’ with:

26: cs(j) ; st[g g[rnd]]
and each ‘assert(e)’ with:

27: localAssert[j] := e

28: function cs(Job j)
29: if (⇤) then return false

30: o := rnd ; rnd := ⇤
31: assume(o < rnd  end[j])

32:
8j0 2 J ⇧ j " j0 =)

assume(rnd  start[j0]_
rnd > end[j0])

33: return true

end[j] by checking that the final value of g in it equals its guessed initial value
in round end[j] + 1. Finally, it checks whether j caused an assertion violation.

Function T̂ (j) is identical to the body of j’s task, except that it uses variable
g[rnd] instead of g and records the argument to its assertion instead of checking
it. This is important because assertions must be checked only after ensuring
consistency of all relevant rounds. Function T̂ (j) also increases value of rnd

non-deterministically (by invoking function cs) to model preemption by higher
priority jobs. As in other work [14], preemption is only allowed before access of
global variables, without losing soundness.

Soundness of compSeq. The state-of-the-art sequentialization for periodic pro-
grams – which we refer to as monoSeq– was developed and shown to be sound
in our prior work [7]. monoSeq first executes all jobs in increasing order of
priority and job position, then ensures round consistency, and finally checks for
assertion violations. In contrast, in the case of compSeq: (1) jobs are serialized
in the order @; (2) the consistency of round end[j] is checked as soon as job j

CompSeq

Algorithm 1 The sequentialization S of the time-bounded periodic program
CH. Notation: J is the set of all jobs; G is the set of global variables of C; ig is
the initial value of g according to C; ‘⇤’ is a non-deterministic value.

1: var rnd, start[], end[], localAssert[]
2: 8g 2 G ⇧ var g[], vg[]

3: function main()
4: 8g 2 G ⇧ g[0] := ig

5: hyperPeriod()

6: function hyperPeriod()
7: scheduleJobs()

8:
8g 2 G ⇧ 8r 2 [1, R)⇧

vg[r] := ⇤; g[r] := vg[r]
let the ordering of jobs by @ be
j0 @ j1 @ . . . jR�1

9: runJob(j0); . . . ; runJob(jR�1)

10: function scheduleJobs()

11: 8j 2 J ⇧ start[j] = ⇤; end[j] = ⇤
// Jobs are sequential

12:
8i 2 [0, N) ⇧ 8k 2 [0, Ji) ⇧ assume
(0  start[J(i, k)]  end[J(i, k)] < R)

// Jobs are well-separated
13: 8j1 C j2 ⇧ assume(end[j1] < start[j2])
14: 8j1 " j2 ⇧ assume(start[j1]  start[j2])

// Jobs are well-nested

15:
8j1 " j2 ⇧ assume(start[j2]  end[j1]

=) (start[j2]  end[j2] < end[j1]))

16: function runJob(Job j)
17: localAssert[j] := 1
18: rnd := start[j]
19: T̂ (j)
20: assume(rnd = end[j])
21: if rnd < R� 1 then

22:
8g 2 G ⇧ assume

(g[rnd] = vg[rnd+ 1])

23:
X := {j0 | (j0 = j _ j

0 " j) ^
(8j00 6= j ⇧ j

0 " j00) j

00 @ j)}
24: 8j0 2 X ⇧ assert(localAssert[j0])

25: function T̂ (Job j)
Obtained from Tt by replacing
each statement ‘st’ with:

26: cs(j) ; st[g g[rnd]]
and each ‘assert(e)’ with:

27: localAssert[j] := e

28: function cs(Job j)
29: if (⇤) then return false

30: o := rnd ; rnd := ⇤
31: assume(o < rnd  end[j])

32:
8j0 2 J ⇧ j " j0 =)

assume(rnd  start[j0]_
rnd > end[j0])

33: return true

end[j] by checking that the final value of g in it equals its guessed initial value
in round end[j] + 1. Finally, it checks whether j caused an assertion violation.

Function T̂ (j) is identical to the body of j’s task, except that it uses variable
g[rnd] instead of g and records the argument to its assertion instead of checking
it. This is important because assertions must be checked only after ensuring
consistency of all relevant rounds. Function T̂ (j) also increases value of rnd

non-deterministically (by invoking function cs) to model preemption by higher
priority jobs. As in other work [14], preemption is only allowed before access of
global variables, without losing soundness.

Soundness of compSeq. The state-of-the-art sequentialization for periodic pro-
grams – which we refer to as monoSeq– was developed and shown to be sound
in our prior work [7]. monoSeq first executes all jobs in increasing order of
priority and job position, then ensures round consistency, and finally checks for
assertion violations. In contrast, in the case of compSeq: (1) jobs are serialized
in the order @; (2) the consistency of round end[j] is checked as soon as job j

CompSeq

Sequentialization Algorithms

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

MonoSeq/CompSeq:

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Exponential Blow-up!

where R= # of Jobs
O(R2)

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

MonoSeq/CompSeq:

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Exponential Blow-up!

where R= # of Jobs
O(R2)

HarmonicSeq: Only for Harmonic Periodic Program

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Sequentialization Algorithms

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

MonoSeq/CompSeq:

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Exponential Blow-up!

where R= # of Jobs
O(R2)

HarmonicSeq: Only for Harmonic Periodic Program

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Pi  Pj =) Pi|Pj

Sequentialization Algorithms

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

MonoSeq/CompSeq:

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Exponential Blow-up!

where R= # of Jobs
O(R2)

HarmonicSeq: Only for Harmonic Periodic Program

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Common in Real-time Embedded Systems:

1. 100% CPU Utilization
2. More predictable battery usage

Sequentialization Algorithms

Naive Approach:

1. Enumerate all possible (sequentialized) executions
2. Verify each of them

MonoSeq/CompSeq:

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

Exponential Blow-up!

where R= # of Jobs
O(R2)

HarmonicSeq: Only for Harmonic Periodic Program

1. Construct a non-deterministic sequentialized program
2. Enforce legal job scheduling and prune out
 infeasible thread executions by adding constraints

where N= # of tasks, usually
exponentially smaller than R

O(R ·N)

Sequentialization Algorithms

Algorithm 2 Procedure to assign legal starting and ending rounds to jobs in a
harmonic program.
1: var min[],max[] //extra variables

2: function scheduleHarmonic()

3: 8j 2 J ⇧ start[j] = ⇤; end[j] = ⇤;min[j] = ⇤;max[j] = ⇤
// Correctness of min and max

4: 8n 2 T ⇧ isleaf (n) =) assume(min[n] = start[n] ^max[n] = end[n])
5: 8n 2 T ⇧ ¬isleaf (n) =) assume(min[n] = MIN(start[n],min[first(n)]))
6: 8n 2 T ⇧ ¬isleaf (n) =) assume(max[n] = MAX(end[n],max[last(n)]))

// Jobs are sequential
7: 8n 2 T ⇧ assume(low(n)  start[n]  end[n]  high(n))

// Jobs are well-separated
8: 8n 2 T ⇧ hasNext(n) =) assume(max[n] < min[next(n)])
9: 8j1 " j2 ⇧ assume(start[j1]  start[j2])

// Jobs are well-nested
10: 8j1 " j2 ⇧ assume(start[j2]  end[j1] =) (start[j2]  end[j2] < end[j1]))

T (n) = sub-tree of T rooted at n isleaf (n) = true i↵ n is a leaf node
level(n) = level of node n size(n) = number of nodes in T (n)
id(n) = position of n in the DFS hasNext(n) = true i↵ n is not the last

order of T node at level level(n)
next(n) = node after n at level level(n) first(n) = first child of n
last(n) = last child of n maxid(n) = id(n) + size(n)� 1
low(n) = id(n)� level(n) high(n) = maxid(n)

Fig. 2. Functions on each node n of the job-graph.

We begin by defining the job-tree T . The nodes of T are the jobs of CH, and
there is an edge from j1 = J(⌧1, p1) to j2 = J(⌧2, p2) i↵ ⇡(j2) = ⇡(j1) + 1 ^
p2/r(⌧1) = p1. Thus, the job-tree is a balanced tree of depth N rooted at J(⌧0, 0)
and for 0  i < N�1, each node at level i (the root is at level 0) has ri children.

Note that since C is harmonic, " contains O(R ·N) job pairs. This is because
if j1 " j2, then j1 must be an ancestor of j2 in T , and there are O(R ·N) such
pairs. Moreover, all elements of " can be enumerated in O(R · N) by checking
for each node j2 of T , and each ancestor j1 of j2, whether j1 " j2.

Let nodes at the same level of T be ordered by increasing arrival time. For
each node n 2 T , we define size(n), first(n), last(n), id(n), maxid(n), level(n),
low(n) and high(n) as in Fig. 2. Note that these are statically computable from
T . Also, maxid(n) = MAXk2T (n)id(n), low(n) is the earliest round in which
job n can start, and high(n) is the latest round in which job n can finish.

Since each job is a node of T , an assignment to start[] and end[] is equivalent
to two functions start and end from nodes of T to values in the range [0, R).
This, in turn, induces the following two additional functions from T to [0, R):

min(n) = MINk2T (n)start(k) max(n) = MAXk2T (n)end(k)

HarmonicSeq

Case Study:

Concurrent Turing Machine

Controller Task
Priority: 1(Lowest)

Period 500ms | WCET: 440ms

1. Calibrate Sensor
2. Command other tasks

Writer Task
Priority: 4

Period 25ms | WCET: < 1ms

Flip bits

Reader Task
Priority: 3

Period 50ms | WCET: < 1ms

Read bits using NXT-colorsensor

TapeMover Task
Priority: 2

Period 100ms | WCET: < 1ms

Move the tape (left or right)

Properties
Property 2: When writer flips a bit, the tape motor and read motor should stop.

Controller
Task

Writer Task

Properties
Property 2: When writer flips a bit, the tape motor and read motor should stop.

Controller
Task

Writer Task

If the READ header is up,
Move it back

to avoid collision!

w
r
i
t

e
r

r
e

a
d

e
r

✓ > 0

Properties
Property 2: When writer flips a bit, the tape motor and read motor should stop.

Controller
Task

Writer Task

If the READ header is up,
Move it back

to avoid collision!

w
r
i
t

e
r

r
e

a
d

e
r

✓ > 0

Properties
Property 2: When writer flips a bit, the tape motor and read motor should stop.

Controller
Task

Writer Task

If the READ header is up,
Move it back

to avoid collision!

w
r
i
t

e
r

r
e

a
d

e
r

✓ > 0

Properties
Property 2: When writer flips a bit, the tape motor and read motor should stop.

Controller
Task

Writer Task

w
r
i
t

e
r

r
e
a
d
e
r

✓ <= 0

OK, it’s safe to write!

Properties
Property 2: When writer flips a bit, the tape motor and read motor should stop.

Controller
Task

Writer Task

w
r
i
t

e
r

r
e
a
d
e
r

✓ <= 0

NO!
The position of READ header is in safe area (<=0),

however it’s possible that it is still moving!

Properties
Property 2: When writer flips a bit, the tape motor and read motor should stop.

Controller
Task

Writer Task

w
r
i
t

e
r

r
e
a
d
e
r

✓ <= 0

REKH(out tool) can find a counterexample
within 2mins.

Experimental Results

Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S, respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period
nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods
nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

balancer to miss a change in the state of obstacle for one period. Experiment
nxt.ok3 is the version of the controller where the race condition has been resolved
using locks. In all cases, harmonicSeq dramatically outperforms monoSeq.
Furthermore, harmonicSeq declares the program safe for aso.bug3. Indeed, the
program is safe under zero-phasing of OSEK. Note that it was flagged unsafe by
monoSeq, a false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, whilemonoSeq times
out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to

Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S, respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period
nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods
nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

balancer to miss a change in the state of obstacle for one period. Experiment
nxt.ok3 is the version of the controller where the race condition has been resolved
using locks. In all cases, harmonicSeq dramatically outperforms monoSeq.
Furthermore, harmonicSeq declares the program safe for aso.bug3. Indeed, the
program is safe under zero-phasing of OSEK. Note that it was flagged unsafe by
monoSeq, a false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, whilemonoSeq times
out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to

Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S, respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period
nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods
nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

balancer to miss a change in the state of obstacle for one period. Experiment
nxt.ok3 is the version of the controller where the race condition has been resolved
using locks. In all cases, harmonicSeq dramatically outperforms monoSeq.
Furthermore, harmonicSeq declares the program safe for aso.bug3. Indeed, the
program is safe under zero-phasing of OSEK. Note that it was flagged unsafe by
monoSeq, a false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, whilemonoSeq times
out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to

Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S, respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period
nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods
nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

balancer to miss a change in the state of obstacle for one period. Experiment
nxt.ok3 is the version of the controller where the race condition has been resolved
using locks. In all cases, harmonicSeq dramatically outperforms monoSeq.
Furthermore, harmonicSeq declares the program safe for aso.bug3. Indeed, the
program is safe under zero-phasing of OSEK. Note that it was flagged unsafe by
monoSeq, a false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, whilemonoSeq times
out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to

Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S, respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period
nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods
nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

balancer to miss a change in the state of obstacle for one period. Experiment
nxt.ok3 is the version of the controller where the race condition has been resolved
using locks. In all cases, harmonicSeq dramatically outperforms monoSeq.
Furthermore, harmonicSeq declares the program safe for aso.bug3. Indeed, the
program is safe under zero-phasing of OSEK. Note that it was flagged unsafe by
monoSeq, a false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, whilemonoSeq times
out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to

Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S, respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period
nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods
nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

balancer to miss a change in the state of obstacle for one period. Experiment
nxt.ok3 is the version of the controller where the race condition has been resolved
using locks. In all cases, harmonicSeq dramatically outperforms monoSeq.
Furthermore, harmonicSeq declares the program safe for aso.bug3. Indeed, the
program is safe under zero-phasing of OSEK. Note that it was flagged unsafe by
monoSeq, a false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, whilemonoSeq times
out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to

Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S, respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period
nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods
nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

balancer to miss a change in the state of obstacle for one period. Experiment
nxt.ok3 is the version of the controller where the race condition has been resolved
using locks. In all cases, harmonicSeq dramatically outperforms monoSeq.
Furthermore, harmonicSeq declares the program safe for aso.bug3. Indeed, the
program is safe under zero-phasing of OSEK. Note that it was flagged unsafe by
monoSeq, a false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, whilemonoSeq times
out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to

Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S, respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period
nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods
nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

balancer to miss a change in the state of obstacle for one period. Experiment
nxt.ok3 is the version of the controller where the race condition has been resolved
using locks. In all cases, harmonicSeq dramatically outperforms monoSeq.
Furthermore, harmonicSeq declares the program safe for aso.bug3. Indeed, the
program is safe under zero-phasing of OSEK. Note that it was flagged unsafe by
monoSeq, a false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, whilemonoSeq times
out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to

Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S, respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period
nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods
nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

balancer to miss a change in the state of obstacle for one period. Experiment
nxt.ok3 is the version of the controller where the race condition has been resolved
using locks. In all cases, harmonicSeq dramatically outperforms monoSeq.
Furthermore, harmonicSeq declares the program safe for aso.bug3. Indeed, the
program is safe under zero-phasing of OSEK. Note that it was flagged unsafe by
monoSeq, a false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, whilemonoSeq times
out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to

MonoSeq considers infeasible thread
executions and declares the program unsafe

(False Alarm)

Table 2. Experimental results of concurrent Turing Machine. H = # of hyper-periods,
OL and SL = # lines of code in the original C program and the generated sequen-
tialization S, respectively; GL = size of the GOTO program produced by CBMC; Var
and Clause = # variables and clauses in the SAT instance, respectively; S = verifica-
tion result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for timeout (85,000s); Time =
verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
H OL SL GL Var Clause (sec) SL GL Var Clause (sec)

ctm.ok1 4 613 13K 121K 2,737K 8,774K Y 44,781 7K 111K 1,063K 3,497K Y 93.39
ctm.ok2 4 610 13K 119K 2,728K 8,738K Y 21,804 7K 109K 1,055K 3,467K Y 87.60
ctm.bug2 4 611 13K 118K 2,707K 8,674K N 2,281 7K 108K 1,047K 3,441K N 86.18
ctm.ok3 6 612 20K 222K 6,276K 20,163K U — 7K 171K 1,667K 5,566K Y 243.76
ctm.bug3 6 612 20K 214K 5,914K 19,044K N 84,625 7K 165K 1,609K 5,383K N 248.65
ctm.ok4 8 613 29K 333K 10,390K 33,550K U — 7K 222K 2,178K 7,417K Y 534.38

– ctm.bug2: In this case, we have the same property as ctm.ok2. In this imple-
mentation, however, the Reader task does not wait for the Controller task
to clear the flag. Since the Reader task has higher priority, the Controller
task is not able to preempt and run the background process.

– ctm.ok3: When the writer flips a bit, the tape motor is stopped and the
read head is at the safe position to avoid a collision with the read head. We
added assert(T speed==0 && get count(RMOTOR)<=0) in the Writer task
to express this property.

– ctm.bug3: We have assumed that the read head is stopped as soon as it ar-
rives at the safe position (get count(RMOTOR)<=0), expressed by assert(T speed==0

&& R speed==0). However, the property does not hold of our implementation
due to the sampling granularity.

– ctm.ok4: We verified that the writer and read motors are stopped when the
tape moves by checking assert(R speed == 0 && W speed == 0) in the
TapeMover task.

Table 2 shows the experimental results of the Turing machine. For each case,
the minimum hyper-period is selected for the analysis to reach the assertion in
the program. For instance, ctm.ok4 case requires at least 8 hyper-periods to
check the assertion. In all cases, compSeq dramatically outperforms monoSeq.
In one case - ctm.ok1 - the performance improves by a factor of 480x.

8 Conclusion

In this paper, we deal with the problem of verifying logical properties, such as
user specified assertions, race conditions, and API usage rules, of Real-Time
Embedded Systems (RTESs). We present a technique for time-bounded verifica-
tion of RTES system implemented by a periodic program in C. The novelty of
the technique is in compositional sequentialization that takes into account inter-
and intra-hyper-period temporal separation between tasks. Tasks in di↵erent

Table 2. Experimental results of concurrent Turing Machine. H = # of hyper-periods,
OL and SL = # lines of code in the original C program and the generated sequen-
tialization S, respectively; GL = size of the GOTO program produced by CBMC; Var
and Clause = # variables and clauses in the SAT instance, respectively; S = verifica-
tion result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for timeout (85,000s); Time =
verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
H OL SL GL Var Clause (sec) SL GL Var Clause (sec)

ctm.ok1 4 613 13K 121K 2,737K 8,774K Y 44,781 7K 111K 1,063K 3,497K Y 93.39
ctm.ok2 4 610 13K 119K 2,728K 8,738K Y 21,804 7K 109K 1,055K 3,467K Y 87.60
ctm.bug2 4 611 13K 118K 2,707K 8,674K N 2,281 7K 108K 1,047K 3,441K N 86.18
ctm.ok3 6 612 20K 222K 6,276K 20,163K U — 7K 171K 1,667K 5,566K Y 243.76
ctm.bug3 6 612 20K 214K 5,914K 19,044K N 84,625 7K 165K 1,609K 5,383K N 248.65
ctm.ok4 8 613 29K 333K 10,390K 33,550K U — 7K 222K 2,178K 7,417K Y 534.38

– ctm.bug2: In this case, we have the same property as ctm.ok2. In this imple-
mentation, however, the Reader task does not wait for the Controller task
to clear the flag. Since the Reader task has higher priority, the Controller
task is not able to preempt and run the background process.

– ctm.ok3: When the writer flips a bit, the tape motor is stopped and the
read head is at the safe position to avoid a collision with the read head. We
added assert(T speed==0 && get count(RMOTOR)<=0) in the Writer task
to express this property.

– ctm.bug3: We have assumed that the read head is stopped as soon as it ar-
rives at the safe position (get count(RMOTOR)<=0), expressed by assert(T speed==0

&& R speed==0). However, the property does not hold of our implementation
due to the sampling granularity.

– ctm.ok4: We verified that the writer and read motors are stopped when the
tape moves by checking assert(R speed == 0 && W speed == 0) in the
TapeMover task.

Table 2 shows the experimental results of the Turing machine. For each case,
the minimum hyper-period is selected for the analysis to reach the assertion in
the program. For instance, ctm.ok4 case requires at least 8 hyper-periods to
check the assertion. In all cases, compSeq dramatically outperforms monoSeq.
In one case - ctm.ok1 - the performance improves by a factor of 480x.

8 Conclusion

In this paper, we deal with the problem of verifying logical properties, such as
user specified assertions, race conditions, and API usage rules, of Real-Time
Embedded Systems (RTESs). We present a technique for time-bounded verifica-
tion of RTES system implemented by a periodic program in C. The novelty of
the technique is in compositional sequentialization that takes into account inter-
and intra-hyper-period temporal separation between tasks. Tasks in di↵erent

Table 2. Experimental results of concurrent Turing Machine. H = # of hyper-periods,
OL and SL = # lines of code in the original C program and the generated sequen-
tialization S, respectively; GL = size of the GOTO program produced by CBMC; Var
and Clause = # variables and clauses in the SAT instance, respectively; S = verifica-
tion result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for timeout (85,000s); Time =
verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
H OL SL GL Var Clause (sec) SL GL Var Clause (sec)

ctm.ok1 4 613 13K 121K 2,737K 8,774K Y 44,781 7K 111K 1,063K 3,497K Y 93.39
ctm.ok2 4 610 13K 119K 2,728K 8,738K Y 21,804 7K 109K 1,055K 3,467K Y 87.60
ctm.bug2 4 611 13K 118K 2,707K 8,674K N 2,281 7K 108K 1,047K 3,441K N 86.18
ctm.ok3 6 612 20K 222K 6,276K 20,163K U — 7K 171K 1,667K 5,566K Y 243.76
ctm.bug3 6 612 20K 214K 5,914K 19,044K N 84,625 7K 165K 1,609K 5,383K N 248.65
ctm.ok4 8 613 29K 333K 10,390K 33,550K U — 7K 222K 2,178K 7,417K Y 534.38

– ctm.bug2: In this case, we have the same property as ctm.ok2. In this imple-
mentation, however, the Reader task does not wait for the Controller task
to clear the flag. Since the Reader task has higher priority, the Controller
task is not able to preempt and run the background process.

– ctm.ok3: When the writer flips a bit, the tape motor is stopped and the
read head is at the safe position to avoid a collision with the read head. We
added assert(T speed==0 && get count(RMOTOR)<=0) in the Writer task
to express this property.

– ctm.bug3: We have assumed that the read head is stopped as soon as it ar-
rives at the safe position (get count(RMOTOR)<=0), expressed by assert(T speed==0

&& R speed==0). However, the property does not hold of our implementation
due to the sampling granularity.

– ctm.ok4: We verified that the writer and read motors are stopped when the
tape moves by checking assert(R speed == 0 && W speed == 0) in the
TapeMover task.

Table 2 shows the experimental results of the Turing machine. For each case,
the minimum hyper-period is selected for the analysis to reach the assertion in
the program. For instance, ctm.ok4 case requires at least 8 hyper-periods to
check the assertion. In all cases, compSeq dramatically outperforms monoSeq.
In one case - ctm.ok1 - the performance improves by a factor of 480x.

8 Conclusion

In this paper, we deal with the problem of verifying logical properties, such as
user specified assertions, race conditions, and API usage rules, of Real-Time
Embedded Systems (RTESs). We present a technique for time-bounded verifica-
tion of RTES system implemented by a periodic program in C. The novelty of
the technique is in compositional sequentialization that takes into account inter-
and intra-hyper-period temporal separation between tasks. Tasks in di↵erent

480x Faster!

Thank you

