Verifying Concurrent Turing Machines
Soonho Kong Arie Gurfinkel Sagar Chaki

June 4,2012

Internship Started
working with Arie and Sagar

June 4,2012

Topic:
“Time-bounded Analysis of Real-time Systems”

June 4,2012

Verification of
“Concurrent, Periodic, Real-time Embedded System”

June 5,2012

-

We need more examples of
concurrent systems.

Can you make one with
LEGO MINDSTORMS?

~

ALAN TURING YEA

By

LEGO Turing Machine!

A Turing Machine built using

June 9,2012

-

OK, Let’s build one!

—J"l‘

ol L v AT Ly
Dl R e 2y -
Y T Pt o s A e

N S Il s

1r 4 I,
S PPH AR
X R

——

e

-

s\
5

. Jele
) ‘_
N A.l. ’ g

[N . Y
". €7 T T A o ‘ < “..
. ® © 90 e - 0e

), PNy

'. ‘O @I(.@ ? ‘.' o

F}f?

xe
oy

L
L

.

- e e e

ve .\ 5
‘o

- &0‘7':.‘0 ’v...-
Y e

2

July 25,2012
Construction Completed!

Software Implementation

Writer Task
Priority: 4
Period 25ms | WCET: < Ims

Flip bits

Controller Task
Priority: | (Lowest)
Period 500ms | WCET: 440ms

|. Calibrate Sensor
2. Command other tasks

Reader Task

Priority: 3
Period 50ms | WCET: < Ims

Read bits using NXT-colorsensor

DEMO

Unary Addition
2 + 3 =1

http://www.youtube.com/watch?v=teDyd0d5M4o
http://www.youtube.com/watch?v=teDyd0d5M4o

Properties

Property |:When a bit is being read, all the motors should stop.

Property 2:When writer flips a bit, the tape motor and read motor should stop.
Property 3:When tape moves, the writer motor and read motor should stop.
Property 4:When a bit is being read, the sensor should be on mode

Property 5:The sensor mode must be switched in Controller Task, not in Reader Task

Properties

Property |:When a bit is being read, all the motors should stop.

Property 2:When writer flips a bit, the tape motor and read motor should stop.
Property 3:When tape moves, the writer motor and read motor should stop.
Property 4:When a bit is being read, the sensor should be on Green mode

case READ_SENSOR:
Propert)’ 5Th if(IR(need_to_run_nxtbg)) { N Reader T&Sk

#1fdef VERIFICATION

assert(R(R_speed) == 0 && R(W_speed) == 0 && R(T_speed) == 0);

assert(ecrobot_get_nxtcolorsensor_mode(COLOR_SENSOR) == NXT_LIGHTSENSOR_GREEN);
#endif

bg_nxtcolorsensor(false);
color = ecrobot_get_nxtcolorsensor_l1ight(COLOR_SENSOR);
W(input, color < R(threshold) 7 1 : 0);

Properties

Property |:When a bit is being read, all the motors should stop.
Property 2:When writer flips a bit, the tape motor and read motor should stop.

Property 3:When tape moves, the writer motor and read motor should stop.

WRITE_FLIP:
Propert)’ 4:When al #iggﬁ VERIFICATION mOde

Property 5:The sens , hot in Reader Task

assert(R(T_speed) == 0 && R(R_speed) == 0);
#¥endif

Properties

Property 2:When writer flips a bit, the tape motor and read motor should stop.

case C_WRITE: Controller

Task
if(R(input) != RCoutput)) {

if(nxt_motor_get_count(READ_MOTOR) > @ &% R(R_state) == READ_IDLE) {
W(R_state, READ_MOVE_HEADER_BACKWARD);

}

if(nxt_motor_get_count(READ_MOTOR) <= @ &% R(W_state) == WRITE_IDLE) {
W(W_state, WRITE_FLIP);

}
} else {

W(W_state, WRITE_IDLE);
C_state = C_MOVE;

}

break;

case WRITE_FLIP: Writer Task
#ifdef VERIFICATION

assert(R(T_speed) == @ &% R(R_speed) == 0);
#endif

Properties

Property 2:When otor and read motor should stop.
Do we need to write!

case C_WRITE: Controller

Task
if(R(input) != RCoutput)) {

if(nxt_motor_get_count(READ_MOTOR) > @ &% R(R_state) == READ_IDLE) {
W(R_state, READ_MOVE_HEADER_BACKWARD);

}

if(nxt_motor_get_count(READ_MOTOR) <= @ &% R(W_state) == WRITE_IDLE) {
W(W_state, WRITE_FLIP);

}
} else {

W(W_state, WRITE_IDLE);
C_state = C_MOVE;

}

break;

case WRITE_FLIP: Writer Task
#ifdef VERIFICATION

assert(R(T_speed) == @ &% R(R_speed) == 0);
#endif

Properties

Property 2:When writer flips a bit, the tape motor and read motor should stop.

case C_WRITE:

Controller

Task
if(R(input) != RCoutput)) { N

if(nxt_motor_get_count(READ_MOTOR) > @ &% R(R_state) == READ_IDLE) { If the READ header is up,

W(R_state, READ_MOVE_HEADER_BACKWARD); :
} Move it back

to avoid collision!

if(nxt_motor_get_count(READ_MOTOR) <= @ &% R(W_state) == WRITE_IDLE) { -
W(W_state, WRITE_FLIP);

}
} else {

W(W_state, WRITE_IDLE);
C_state = C_MOVE;

}

break;

case WRITE_FLIP: Writer Task
#ifdef VERIFICATION

assert(R(T_speed) == @ &% R(R_speed) == 0);
#endif

Properties

Property 2:When writer flips a bit, the tape motor and read motor should stop.

case C_WRITE: Controller

Task
if(R(input) != RCoutput)) {

if(nxt_motor_get_count(READ_MOTOR) > @ &% R(R_state) == READ_IDLE) {
W(R_state, READ_MOVE_HEADER_BACKWARD);

}

if(nxt_motor_get_count(READ_MOTOR) <= @ &% R(W_state) == WRITE_IDLE) {
W(W_state, WRITE_FLIP);

}
} else {

W(W_state, WRITE_IDLE); OK it’s safe to write!
C_state = C_MOVE;

}

break;

case WRITE_FLIP: Writer Task
#ifdef VERIFICATION

assert(R(T_speed) == @ &% R(R_speed) == 0);
#endif

Properties

Property 2:When writer flips a bit, the tape motor and read motor should stop.

case C_WRITE:

Controller
Task

if(R(input) != RCoutput)) {

if(nxt_motor_get_count(READ_MOTOR) > @ &% R(R_state) == READ_IDLE) {
W(R_state, READ_MOVE_HEADER_BACKWARD);

}

if(nxt_motor_get_count(READ_MOTOR) <= @ &% R(W_state) == WRITE_IDLE) {
W(W_state, WRITE_FLIP);

}
} else {

W(W_state, WRITE_IDLE);
C_state = C_MOVE;

}

break;

case WRITE_FLIP: Writer Task
#ifdef VERIFICATION

assert(R(T_speed) == @ &% R(R_speed) == 0); NO!
#endif The position of READ header is in safe area (<=0),

however it’s possible that it is still moving!

Properties

Property 2:When writer flips a bit, the tape motor and read motor should stop.

case C_WRITE:

Controller
Task

if(R(input) != RCoutput)) {

if(nxt_motor_get_count(READ_MOTOR) > @ &% R(R_state) == READ_IDLE) {
W(R_state, READ_MOVE_HEADER_BACKWARD);

}

if(nxt_motor_get_count(READ_MOTOR) <= @ &% R(W_state) == WRITE_IDLE) {
W(W_state, WRITE_FLIP);

}
} else {

W(W_state, WRITE_IDLE);
C_state = C_MOVE;

}

break;

case WRITE_FLIP: Writer Task
#ifdef VERIFICATION

assert(R(T_speed) == @ &% R(R_speed) == 0);
#endif REKH(out tool) can find this bug within 2mins.

DEMO

REKH & Counterexample

http://www.cs.cmu.edu/~soonhok/rekh-viz

http://www.cs.cmu.edu/~soonhok/rekh-viz
http://www.cs.cmu.edu/~soonhok/rekh-viz

Thank you!

