15-414 Bug Catching: Model Checking

Soonho Kong
soonhok@cs.cmu.edu

10 Oct 2011
Model Checking
Model Checking

What is “Model”?
Kripke Structure is a triple $\langle S, R, L \rangle$, where

- S is the set of states
- $R \subseteq S \times S$ is the transition relation (left-total), and
- $L : S \rightarrow \mathcal{P}(AP)$ gives the set of atomic propositions true in each state
Model Checking

What to Check?
Model Checking Problem

Find all states s such that M has property f at state s.

$M, s \models f$

Kripke Structure
state
Property
(Temporal Logic Formula)
Model Checking Problem

Find all states s such that M has property f at state s.

$M, s \models f$

Kripke Structure

state

Property
(Temporal Logic Formula)

EX q
Model Checking Problem

Find all states s such that M has property f at state s.

\[M, s \models f \]

Kripke Structure

\[s_0 \rightarrow p \rightarrow p, q \rightarrow s_1 \]

\[s_2 \rightarrow q \rightarrow s_3 \]

\[s_0 \rightarrow p \]

\[\text{Property (Temporal Logic Formula)} \]

\[\text{EX } q \]
Model Checking Problem

Find all states s such that M has property f at state s.

$M, s \models f$

Kripke Structure state Property
(Temporal Logic Formula)

EX q
Model Checking Problem

Find all states s such that M has property f at state s.

$M, s \models f$

Kripke Structure

state

Property (Temporal Logic Formula)

EX q
Model Checking Problem

Find all states s such that M has property f at state s.

$M, s \models f$

Kripke Structure

state

Property

(Temporal Logic Formula)

EX q
Model Checking

What’s Temporal Logic (esp, CTL*)?
The Logic CTL*

The computation tree logic CTL* combines both branching-time and linear-time operators.

In this logic a *path quantifier* can prefix an assertion composed of arbitrary combinations of the usual linear-time operators.

1. Path quantifier:

 \(A \) - “for every path”

 \(E \) - “there exists a path”

2. Linear-time operators:

 \(X \ p \) - \(p \) holds next time

 \(F \ p \) - \(p \) holds sometime in the future

 \(G \ p \) - \(p \) holds globally in the future

 \(p \ U \ q \) - \(p \) holds until \(q \) holds
Semantics of State Formulas

For a state formula f, the notation

$$M, s \models f$$

means that f holds at state s in the Kripke structure M. It’s inductively defined as follows:

$$M, s \models p \iff p \in L(s)$$

$$M, s \models \neg f \iff M, s \not\models f$$

$$M, s \models f_1 \lor f_2 \iff M, s \models f_1 \text{ or } M, s \models f_2$$
Semantics of State Formulas

For a state formula f, the notation

$$M, s \models f$$

means that f holds at state s in the Kripke structure M. It’s inductively defined as follows:

$$s \models E(g) \iff \text{there exists a path } \pi \text{ starting with } s \text{ such that } \pi \models g.$$
Semantics of State Formulas

For a state formula f, the notation $\mathcal{M}, s \models f$ means that f holds at state s in the Kripke structure \mathcal{M}. It’s inductively defined as follows:

$$s \models A(g) \iff \text{For all path } \pi \text{ starting with } s, \text{ we have } \pi \models g.$$
Semantics of Path Formulas

For a path formula f, the notation

$$M, \pi \models f$$

means that f holds along path π in the Kripke structure M. It's inductively defined as follows:

$$M, \pi \models f \iff s \text{ is the first state of } \pi \text{ and } s \models f.$$
Semantics of Path Formulas

For a path formula f, the notation

$$ M, \pi \models f $$

means that f holds along path π in the Kripke structure M. It's inductively defined as follows:

$$ M, \pi \models Xf \iff M, \pi^1 \models f $$
Semantics of Path Formulas

For a path formula \(f \), the notation

\[
M, \pi \models f
\]

means that \(f \) holds along path \(\pi \) in the Kripke structure \(M \). It's inductively defined as follows:

\[
M, \pi \models \mathbf{X}f \iff M, \pi^1 \models f
\]

\[\pi^0 \rightarrow \text{green circles} \rightarrow \text{circles} \rightarrow \ldots\]

\[
M, \pi^1 \models f
\]
Semantics of Path Formulas

For a path formula f, the notation

$$ M, \pi \models f $$

means that f holds along path π in the Kripke structure M. It’s inductively defined as follows:

$$ M, \pi \models Gf \iff \text{for all } i \geq 0, \pi^i \models f $$
Semantics of Path Formulas

For a path formula f, the notation

$$ M, \pi \models f $$

means that f holds along path π in the Kripke structure M. It’s inductively defined as follows:

$$ M, \pi \models G f \iff \text{for all } i \geq 0, \pi^i \models f $$

$$ \pi^0 \rightarrow \pi^1 \rightarrow \pi^2 \rightarrow \pi^3 \rightarrow \ldots $$
Semantics of Path Formulas

For a path formula f, the notation

$$M, \pi \models f$$

means that f holds along path π in the Kripke structure M. It's inductively defined as follows:

$$M, \pi \models Ff \iff \text{there exists } i \geq 0, \pi^i \models f$$
Semantics of Path Formulas

For a path formula \(f \), the notation

\[
M, \pi \models f
\]

means that \(f \) holds along path \(\pi \) in the Kripke structure \(M \). It’s inductively defined as follows:

\[
M, \pi \models F f \iff \text{there exists } i \geq 0, \pi^i \models f
\]
Semantics of Path Formulas

For a path formula f, the notation

$$M, \pi \models f$$

means that f holds along path π in the Kripke structure M. It’s inductively defined as follows:

$$M, \pi \models f_1 U f_2 \iff \text{there exists } k \geq 0 \text{ such that } M, \pi^k \models f_2$$

and for all $0 \leq j < k$, $M, \pi^j \models f_1$
Semantics of Path Formulas

For a path formula f, the notation

$$M, \pi \models f$$

means that f holds along path π in the Kripke structure M. It’s inductively defined as follows:

$$M, \pi \models f_1 U f_2 \iff \text{there exists } k \geq 0 \text{ such that } M, \pi^k \models f_2$$

and for all $0 \leq j < k$, $M, \pi^j \models f_1$
Model Checking Problem

Find all states s such that M has property f at state s.

$M, s \models f$

Kripke Structure state Property (Temporal Logic Formula)

How to Solve it?
Model Checking Problem

Find all states \(s \) such that \(M \) has property \(f \) at state \(s \).

\[
M, s \models f
\]

Kripke Structure \quad \text{state} \quad \text{Property (Temporal Logic Formula)}

Fixed-Point Computation, using the following Identity!

\[
\begin{align*}
AF \ f_1 &= \text{lfp} \ Z(f_1 \lor AX \ Z) \\
EF \ f_1 &= \text{lfp} \ Z(f_1 \lor EX \ Z) \\
AG \ f_1 &= \text{gfp} \ Z(f_1 \land AX \ Z) \\
EG \ f_1 &= \text{gfp} \ Z(f_1 \land EX \ Z) \\
A[f_1 \mathbin{U} f_2] &= \text{lfp} \ Z(f_2 \lor (f_1 \land AX \ Z)) \\
E[f_1 \mathbin{U} f_2] &= \text{lfp} \ Z(f_2 \lor (f_1 \land EX \ Z))
\end{align*}
\]
This example is from the textbook (page 65)

\[E[pUq] = \text{lfp}\ Z.q \lor (p \land \text{EX} \ Z) \]