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Goal

To Understand basic concepts of abstract interpretation.
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Introduction

Abstract Interpretation:
a theory of approximation of mathematical structures, in particular those
involved in the semantic models of computer systems.
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Transition Systems

Programs are formalized as transition systems τ:

τ = ⟨Σ,Σi, t⟩

Σ : a set of states

Σi ⊆ Σ : the set of initial states

t ⊆ Σ× Σ : a transition relation between a state and its possible
successors.

Example, the transition system

⟨Z, {0}, {⟨x, x ′⟩ | x ′ = x+ 1}⟩

of program x := 0; while true do x := x + 1.
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Partial Trace Semantics

A finite partial execution trace : σ = s0s1 . . . sn

s0 ∈ Σ

For all i < n, ⟨si, si+1⟩ ∈ t

Partial traces of length 0 : ϕ
Partial traces of length 1 : Σ1

τ = {s | s ∈ Σ}

Partial traces of length n + 1 :

Σn+1
τ = {σss ′ | σs ∈ Σn

τ ∧ ⟨s, s ′⟩ ∈ t}

Collecting semantics of τ : all partial traces of all finite lengths

Σ
−→∗
τ =

∪
n>0

Σn
τ
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Partial Trace Semantics in Fixpoint Form

For the function F
−→∗
τ

F
−→∗
τ (X) = {s | s ∈ Σ} ∪ {σss ′ | σs ∈ X∧ ⟨s, s ′⟩ ∈ t}

Σ
−→∗
τ is the least fixpoint of F

−→∗
τ , that is

F
−→∗
τ (Σ

−→∗
τ ) = Σ

−→∗
τ

For all X such that F
−→∗
τ (X) = X , Σ

−→∗
τ ⊆ X

Therefore,
Σ
−→∗
τ = lfpF

−→∗
τ =

∪
n>0

F
−→∗
τ

n
(ϕ)
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Partial Trace Semantics in Fixpoint Form - Proof I.

.

F
−→∗
τ (Σ

−→∗
τ ) = Σ

−→∗
τ

The proof is as follows:

F
−→∗
τ (Σ

−→∗
τ ) = F

−→∗
τ (

∪
n>0

Σn
τ ) def.Σ

−→∗
τ

= {s | s ∈ Σ} ∪ {σss ′ | σs ∈ (
∪
n>0

Σn
τ )∧ ⟨s, s ′⟩ ∈ t} def. F

−→∗
τ

= {s | s ∈ Σ} ∪
∪
n>0

{σss ′ | σs ∈ (Σn
τ )∧ ⟨s, s ′⟩ ∈ t} set theory

= Σ1
τ ∪

∪
n>0

Σn+1
τ def. Σ1

τ and Σn+1
τ

=
∪

n ′>1

Σn ′
τ =

∪
n>0

Σn
τ

by letting n ′ = n+ 1 and since Σn
τ = ϕ

Soonho Kong (Carnegie Mellon University) Basic Concepts of Abstract Interpretation Mar 23, 2011 9 / 35



. . . . . .

Partial Trace Semantics in Fixpoint Form - Proof II

For all X such that F
−→∗
τ (X) = X , Σ

−→∗
τ ⊆ X

We prove by induction that ∀n > 0 : Σn
τ ⊆ X

...1 Base Case : Σ0
τ = ϕ ⊆ X

...2 Inductive Hypothesis : Σn
τ ⊆ X

Since σs ∈ Σn
τ → σs ∈ X,

{σss ′ | σs ∈ Σn
τ ∧ ⟨s, s ′⟩ ∈ t} ⊆ {σss ′ | σs ∈ X∧ ⟨s, s ′⟩ ∈ t}

Therefore,
Σn+1
τ ⊆ F

−→∗
τ (Σn

τ ) ⊆ F
−→∗
τ (X) = X
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The Reflexive Transitive Closure Semantics as an
Abstraction

Abstraction of the partial trace semantics

α∗(X) = {−→α (σ) | σ ∈ X} where −→α (s0s1 . . . sn) = ⟨s0, sn⟩

α∗(Σ
−→∗
τ ) is the reflexive transitive closure t∗ of the transition relation

t.

Concretization

γ∗(Y) = {σ | −→α (σ) ∈ Y} = {s0s1 . . . sn | ⟨s0, sn⟩ ∈ Y}

X ⊆ γ∗(α∗(X))
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Answering Concrete Questions in the Abstract

Answering concrete question about X using a simpler abstract question on
α∗(X).
Example : s . . . s ′ . . . s ′′ ∈ X? → ⟨s, s ′′⟩ ∈ α∗(X)?
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Galois Connections

Given any set X of partial traces and Y of pair of states,

α∗(X) ⊆ Y ⇐⇒ X ⊆ γ∗(Y)

which is a characteristic property of Galois connections.
Proof.

α∗(X) ⊆ Y ⇐⇒ {−→α ∗(σ) | σ ∈ X} ⊆ Y def. α∗

⇐⇒ ∀σ ∈ X : −→α (σ) ∈ Y

⇐⇒ X ⊆ {σ | −→α (σ) ∈ Y} def. ⊆
⇐⇒ X ⊆ γ∗(Y) def. γ∗
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Galois Connections

Galois connections preserve joins.

α∗(
∪
i∈I

Xi) =
∪
i∈I

α∗(Xi)

Proof.

α∗(
∪
i∈I

Xi) = {−→α ∗(σ) | σ ∈
∪
i∈I

Xi}

=
∪
i∈I

{−→α ∗(σ) | σ ∈ Xi}

=
∪
i∈I

α∗(Xi)
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The Reflexive Transitive Closure Semantics in Fixpoint
Form

* General Principle in Abstract Interpretation.

...1 The concrete(partial trace) semantics is expressed in fixpoint form.

Σ
−→∗
τ = lfpF

−→∗
τ

...2 The abstract(reflexive transitive closure) semantics is an abstraction
of the concrete semantics by a Galois connections and it can be
expressed in fixpoint form, too.

α∗(Σ
−→∗
τ ) = lfpF∗

τ

...3 2 can be generalized to order theory, and is known as the fixpoint
transfer theorem.
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The Reflexive Transitive Closure Semantics in Fixpoint
Form - Propositions & Definitions.

.

...1 Proposition 1. α∗(ϕ) = ϕ

ϕ ⊆ γ∗(ϕ) ⇐⇒ α∗(ϕ) ⊆ ϕ. Therefore α∗(ϕ) = ϕ.
...2 Propostion 2.

Commutation Property: α∗(F
−→∗
τ (X)) = F∗

τ(α
∗(X))

...1 Definition 1. IΣ = {⟨s, s⟩ | s ∈ Σ}

...2 Definition 2. F∗
τ(Y) = IΣ ∪ Y ◦ t

α∗(F
−→∗
τ (X))

= α∗({s | s ∈ Σ} ∪ {σss ′ | σs ∈ X∧ ⟨s, s ′⟩ ∈ t}) def. F
−→∗
τ

= {−→α (s) | s ∈ Σ} ∪ {−→α (σss ′) | σs ∈ X∧ ⟨s, s ′⟩ ∈ t}) def. α∗

= {⟨s, s⟩ | s ∈ Σ} ∪ {⟨σ0, s
′⟩ | ∃s : σs ∈ X∧ ⟨s, s ′⟩ ∈ t}) def. −→α

= IΣ ∪ {⟨σ0, s
′⟩ | ∃s : ⟨σ0, s⟩ ∈ α∗(X)∧ ⟨s, s ′⟩ ∈ t}) def.IΣ,α∗

= IΣ ∪ α∗(X) ◦ t
= F∗

τ(α
∗(X))
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. . . . . .

The Reflexive Transitive Closure Semantics in Fixpoint
Form - Proof

Showing
α∗(Σ

−→∗
τ ) = lfpF∗

τ

is equivalent to prove that

α∗(
∪
n>0

F
−→∗
τ

n
(ϕ)) =

∪
n>0

F∗
τ
n(ϕ)

Using induction on

∀n : α∗(F
−→∗
τ

n
(ϕ)) = F∗

τ
n(ϕ)

Soonho Kong (Carnegie Mellon University) Basic Concepts of Abstract Interpretation Mar 23, 2011 17 / 35



. . . . . .

The Reflexive Transitive Closure Semantics in Fixpoint
Form - Proof

∀n : α∗(F
−→∗
τ

n
(ϕ)) = F∗

τ
n(ϕ)

...1 Base Case:
α∗(F

−→∗
τ

0
(ϕ)) = ϕ = F∗

τ
0(ϕ)

...2 Inductive Hypothesis: α∗(F
−→∗
τ

n
(ϕ)) = F∗

τ
n(ϕ)

α∗(F
−→∗
τ

n+1
(ϕ)) = α∗(F

−→∗
τ (F

−→∗
τ

n
(ϕ)))

= F∗
τ(α

∗(F
−→∗
τ

n
(ϕ))) commutative

= F∗
τF

∗
τ
n(ϕ) inductive hypothesis

= F∗
τ
n+1(ϕ)
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The Reachability Semantics as an Abstraction

The reachability semantics of the transition system τ = ⟨Σ,Σi, t⟩

{s ′ | ∃s ∈ Σi : ⟨s, s ′⟩ ∈ t∗}

is the set of states that are reachable from the initial states Σi.
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The Reachability Semantics as an Abstraction

Definition post[r]Z: The right-image of the set Z by relation r

post[r]Z = {s ′ | ∃s ∈ Z : ⟨s, s ′⟩ ∈ r}
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The Reachability Semantics as an Abstraction

Abstraction of the reflexive transitive closure semantics Y is defined as

α•(Y) = {s ′ | ∃s ∈ Σi : ⟨s, s ′⟩ ∈ Y}

= post[Y]Σi

Concretization of the reachability semantics Z is defined as

γ•(Z) = {⟨s, s ′⟩ | s ∈ Σi =⇒ s ′ ∈ Z}
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Galois Connection

We have the Galois Connection:

α•(Y) ⊆ Z ⇐⇒ Y ⊆ γ•(Z)

Proof.

α•(Y) ⊆ Z ⇐⇒ {s ′ | ∃s ∈ Σi : ⟨s, s ′⟩ ∈ Y} ⊆ Z def. α•

⇐⇒ ∀s ′ : ∀s ∈ Σi : ⟨s, s ′⟩ ∈ Y =⇒ s ′ ∈ Z def. ⊆
⇐⇒ ∀⟨s, s ′⟩ ∈ Y : s ∈ Σi =⇒ s ′ ∈ Z} def. =⇒
⇐⇒ Y ⊆ {⟨s, s ′⟩ | s ∈ Σi =⇒ s ′ ∈ Z} def. ⊆
⇐⇒ Y ⊆ γ•(Z) def. γ•
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The Reachability Semantics in fixpoint form

...1 Define F•
τ(Z) = Σi ∪ post[t]Z.

...2 Establish commutation property α•(F∗
τ(Y)) = α•(F•

τ(Y))

α•(F∗
τ(Y))

= {s ′ | ∃s ∈ Σi : ⟨s, s ′⟩ ∈ (IΣ ∪ Y ◦ t)} def. α•&F∗
τ

= {s ′ | ∃s ∈ Σi : s
′ = s}∪

{s ′ | ∃s ∈ Σi : ∃s ′′ : ⟨s, s ′′⟩ ∈ Y ∧ ⟨s ′′, s ′⟩ ∈ t} def. IΣ&◦
=Σi ∪ {s ′ | ∃s ′′ ∈ α•(Y)∧ ⟨s ′′, s ′⟩ ∈ t} def. α•

=α•(F•
τ(Y)) def F•

τ(Z)

...3 By the fixpoint transfer theorem,

α•(t∗) = α•(lfpF∗
τ) = lfpF•

τ
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The Interval Semantics as an Abstraction

The set of states of a transtion system τ = ⟨Σ,Σi, t⟩ is totally ordered
⟨Σ,<⟩ with extrema −∞ and +∞, the interval semantics α⊢⊣(α•(t∗)) of
τ provides bounds on its reachable states α•(t∗):

α⊢⊣(Z) = [minZ,maxZ]

min(ϕ) = ∞ max(ϕ) = −∞
Concretization:

γH([l,h]) = {s ∈ Σ | l 6 s 6 h}

Abstract implication:

[l,h] ⊑ [l ′,h ′] ⇐⇒ (l ′ 6 l∧ h 6 h ′)
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. . . . . .

Galois Connection

We have the Galois Connection:

α⊢⊣(Z) ⊑ [l,h] ⇐⇒ Z ⊆ γH([l,h])

Proof.

α⊢⊣(Z) ⊑ [l,h] ⇐⇒ [minZ,maxZ] ⊑ [l,h] def. α⊢⊣

⇐⇒ l 6 minZ∧maxZ 6 h def. ⊑
⇐⇒ Z ⊆ {s ∈ Σ | l 6 s 6 h} def. min&max

⇐⇒ Z ⊆ γH([l,h]) def. γH

By defining ⊔
i∈I

[li,hi] = [mini∈I li,maxi∈I hi]

, Galois connection preserves least upper bounds

α⊢⊣(
∪
ı∈I

Zi) =
⊔
i∈I

(Zi)
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The Interval Semantics in Fixpoint Form.

.

...1 Define [minΣi,maxΣi] ∪ α⊢⊣ ◦ post[t] ◦ γH(I) ⊑ FH
τ (I)

...2 Establish semi-commutation property

α⊢⊣(F•
τ(Z)) ⊑ FH

τ (α⊢⊣(Z))

α⊢⊣(F•
τ(Z)) = α⊢⊣(Σi ∪ post[t]Z) def F•

τ

= α⊢⊣(Σi) ∪ α⊢⊣(post[t][Z]) Galois Connection

⊑ [minΣi,maxΣi] ∪ α⊢⊣(post[t](γH(α⊢⊣(Z))))

⊑ FH
τ (α⊢⊣(Z))

...3 By the fixpoint approximation:

α⊢⊣(F•
τ(t

∗)) = α⊢⊣(lfpF•
τ) ⊑ lfpFH

τ
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Convergence Acceleration

In general, lfpFH
τ =

⊔
n>0 F

H
τ (ϕ = [+∞,−∞]) diverge. Example, the

transition system
⟨Z, {0}, {⟨x, x ′⟩ | x ′ = x+ 1}⟩

of program x := 0; while true do x := x + 1.

FH
τ ([l,h]) = [0, 0] ∪ [l+ 1,h+ 1]

It diverges: [+∞, −∞], [0, 0], [0, 1], [0, 2], . . .
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Widening

To accelerate convergence, introduce a widening ▽ such that,

(X ⊑ X▽ Y)∧ (Y ⊑ X▽ Y)

I0 = ϕ = [+∞,−∞]

In+1 = In if FH
τ (In) ⊑ In

= In ▽ FH
τ (In) otherwise.

limit Iλ is finite(λ ∈ N) and is a fixpoint overapproximation

lfpFH
τ ⊑ Iλ
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Example of Widening

An example of interval widening

...1 choosing finite sequence

−∞ = r0 < r1 < · · · < rk = +∞
...2

[+∞,−∞]▽ [l,h] = [l,h]

[l,h]▽ [l ′,h ′] = [if l > l ′ then max{ri|ri 6 l ′} else l,

if h < h ′ then min{ri|h
′ 6 ri} else h]
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Example of Widening
Example, the transition system

⟨Z, {0}, {⟨x, x ′⟩ | x ′ = x+ 1}⟩

of program x := 0; while x < 100 do x := x + 1.

FH
τ ([l,h]) = [0, 0] ∪ [l+ 1,min(99,h) + 1]

...1 Sequence r = −∞ < −1 < 0 < 1 < ∞

...2

I0 = [+∞,−∞]

I1 = [0, 0] ⊔ [1, 1] = [0, 1]

I2 = [0, 1] ⊔ [0, 2] = [0,+∞]

I3 = [0,+∞]
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Narrowing

The limit of an iteration with widening can be improved by a narrowing △,
such that

Y ⊑ X =⇒ Y ⊑ (X△ Y) ⊑ X

All terms in the iterates with narrowing

J0 = Iλ

Jn+1 = Jn △ FH
τ (J0)

improve the result obtained by widening.

lfpFH
τ ⊑ Jn ⊑ Iλ
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Example of Narrowing

[l,h]△ [l ′,h ′] = [if ∃i : l = ri then l ′ else l, if ∃j : h = rj then h ′ else h]

Example, the transition system

⟨Z, {0}, {⟨x, x ′⟩ | x ′ = x+ 1}⟩

of program x := 0; while x < 100 do x := x + 1.

J0 = [0,+∞]

J1 = [0,+∞]△ [0, 100] = [0, 100]

J2 = [0, 100]△ [0, 100] = [0, 100]
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Composition of Abstractions

The design of three abstractions of the partial trace semantics Σ
−→∗
τ of a

transition system τ was compositional. Composition of Galois connections
is a Galois connection so the successive arguments on sound approximation
do compose nicely.

α⊢⊣ ◦ α• ◦ α∗,γ∗ ◦ γ• ◦ γH
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Hierarchy of Semantics

The four semantics of a transition system τ = ⟨Σ,Σi, t⟩ form a hierarchy
...1 Partial traces Σ

−→∗
τ

...2 Reflexive transitive closure α∗(Σ
−→∗
τ )

...3 Reachability α• ◦ α∗(Σ
−→∗
τ )

...4 Interval semantics α⊢⊣ ◦ α• ◦ α∗(Σ
−→∗
τ )
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Thanks

Thank you for listening.
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