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Goal

To Understand basic concepts of abstract interpretation.
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Introduction

Abstract Interpretation:

a theory of approximation of mathematical structures, in particular those
involved in the semantic models of computer systems.
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Transition Systems

Programs are formalized as transition systems T:

T= <Z, X, t>

@ X : a set of states
@ X; C X : the set of initial states

e t C X x X : atransition relation between a state and its possible
SUCCeSSOrs.

Example, the transition system
(Z A0} {(x,x") X" =x+1})

of program x := 0; while true do x := x + 1.
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Partial Trace Semantics

A finite partial execution trace : 0 = $pS1...5n
@ spEX
e Foralli<m, (si,si11) €t

Partial traces of length 0 : ¢

Partial traces of length 1 : £} ={s|s € I}
Partial traces of length n + 1 :

Il —loss’ |os € I A (s, s') € t}

Collecting semantics of T : all partial traces of all finite lengths

T T
n>0
Soonho Kong (Carnegie Mellon University) | Basic Concepts of Abstract Interpretation Mar 23, 2011

7/35



Partial Trace Semantics in Fixpoint Form

. g
For the function

S"?(X) ={s|se€Z}Ufoss’| os € XN (s,s') €t}

ZT? is the least fixpoint of 3"?, that is
- = —
o Fr(XF )=t
— —
e For all X such that F* (X) =X, L} CX
Therefore, N . .
£eo=1updT = (5T (9)

n>0
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Partial Trace Semantics in Fixpoint Form - Proof |

¥ (yF

_
Fo(Es) =27
The proof is as follows:

R —
FoEN =77 D
n>0
={s|seZ}Uloss’|os e ( U IMYA (s, s') et}
n>0
={s|sezju U{Gss’ |os € (EM) A (s, s') €t}
n=0
=u ot
n=>0
— U o= U bR
n/>1 n>0

by letting n’ =n + 1 and since £} = ¢
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Partial Trace Semantics in Fixpoint Form - Proof Il

For all X such that 77 (X) = X , ZF C X
We prove by induction that VYn > 0 : £ C X
@ Base Case : 22=¢gx
@ Inductive Hypothesis : £ C X
Since 0s € I — os € X,
{oss’ | os € X2 A (s,s’) € t} C{oss’ | os € XA (s,s') € t}

Therefore, N N
Il cgr (M CcFr(X) =X
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The Reflexive Transitive Closure Semantics as an
Abstraction

@ Abstraction of the partial trace semantics
«*(X) ={d(0) | o € X} where o (sgs1...5n) = (s0, Sn)
a* (L) is the reflexive transitive closure t* of the transition relation
t.

@ Concretization
Y*(Y) ={o| &(0) € Y} ={s051...5n | {s0,5n) €V}

o X C y*(a*(X))
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Answering Concrete Questions in the Abstract

Answering concrete question about X using a simpler abstract question on
ot (X).
Example : s...s"...s" € X? — (s,s") € «*(X)?
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Galois Connections

Given any set X of partial traces and Y of pair of states,
oa*(X) CY <= X Cy*(Y)

which is a characteristic property of Galois connections.
Proof.

F(X)CY < {ad*(0)|oeX}CY def. o*
= VoeX:d(o) €Y
s XC{o| &(0) €Y} def. C
— X Cvy*(Y) def. v*
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Galois Connections

Galois connections preserve joins.

“(Uxi) = e x0)

i€l iel
Proof.

o (| JXi) ={a*(0) | o€ | JXi}

iel iel
=@ (o) [oeXxy
iel
= U o (X)
iel
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The Reflexive Transitive Closure Semantics in Fixpoint
Form

* General Principle in Abstract Interpretation.

@ The concrete(partial trace) semantics is expressed in fixpoint form.

¥ —1tpFF

T

@ The abstract(reflexive transitive closure) semantics is an abstraction
of the concrete semantics by a Galois connections and it can be
expressed in fixpoint form, too.

_>
(L) =1fp Ty

© 2 can be generalized to order theory, and is known as the fixpoint
transfer theorem.
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The Reflexive Transitive Closure Semantics in Fixpoint
Form - Propositions & Definitions

@ Proposition 1. a*(d) = ¢
¢ Sy () &= o*(P) C ¢. Therefore a*(d) = ¢.
@ Propostion 2. .
Commutation Property: o (F (X)) = Fi(a* (X))
@ Definition 1. Iy ={(s,s) | s € I}
@ Definition 2. F(Y) =Iz UY ot

o (F7 (X))
=a*({s|se€Z}U{oss’| os € XA(s,s") €t} def. 3:?
={d(s)|seLu{d(oss’) | os € XAl(s s') €t}) def. o*

={(s,s)|se€Z}U{{op,s') [ Ts:0s € XA (s,s") €t)) def. &
=Ty U{{0o,s") | Is: {00,s) € «*(X) A (s,s) € t}) def Iy, o*
=IsUua*(X)ot

= (" (X))
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The Reflexive Transitive Closure Semantics in Fixpoint
Form - Proof

Showing N
«(Z7) =1fp T

is equivalent to prove that

(U F " 0) = U 5 0)

n>0 n>0

Using induction on

vn : oc*(&"fm(d))) =F" ()
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The Reflexive Transitive Closure Semantics in Fixpoint
Form - Proof

Vot (FE () = T (o)
@ Base Case:

o (TF () = ¢ = FE(¢)
@ Inductive Hypothesis: oc*(&"?n(cb)) =T (¢)

o (FE @) = o« (FF (57 ()
= ff:(“*(fﬂ?n(d)))) commutative
= FLFM(d) inductive hypothesis
=5:""H0)
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The Reachability Semantics as an Abstraction

The reachability semantics of the transition system T = (X, Z;, t)
{s"|3s € Zi: (s, s") €t}

is the set of states that are reachable from the initial states X;.
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The Reachability Semantics as an Abstraction

Definition post[r]Z: The right-image of the set Z by relation r

post[r]Z ={s"|3s € Z: (s,s') €1}
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The Reachability Semantics as an Abstraction

Abstraction of the reflexive transitive closure semantics Y is defined as

a®(Y)={s'|Ts€ Li:(s,s") €Y}
= post[Y]X;

Concretization of the reachability semantics Z is defined as

v (Z)={(s,s") |s€ Ly =s" € Z}
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Galois Connection

We have the Galois Connection:
«*(Y) CZ<= Y Cvy*(Z)
Proof.

®(Y)CZ+={s'|FsecZi:(s,s')eY}CZ
Vs :VseZLi:(s,sYeY=5s"€Z
<~ V(s,s'VeY:se L =s'e€Z}
= YC{(s,s)|sei=5s"€Z)
=Y Cvy*(2)
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The Reachability Semantics in fixpoint form

© Define F3(Z) = X; Upost[t]Z.
@ Establish commutation property «®(F%(Y)) = o«®(F2(Y))
o® (F2(Y))
={s'|Fs e Zi:(s,8') e (Ir UYot)} def. «*&TF:
={s'|dse Li:s' =s}U
{s"|FseXi:3s":(s,8") e YN (s" s') et} def. Tx&o
=L U{s"|3s" e a®(Y)A(s",s") et} def. «®
=a®(F2(Y)) def F3(Z)

© By the fixpoint transfer theorem,

a®(t") = «*(1fp F;) = 1fp T3
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The Interval Semantics as an Abstraction

The set of states of a transtion system T = (X, X, t) is totally ordered
(X, <) with extrema —oo and 400, the interval semantics & '(ot®(t*)) of

T provides bounds on its reachable states o®(t%):

«(Z) = [min Z, max Z|

min(¢) = co max($p) = —oo
Concretization:

YL ={seZ|1<s<h)
Abstract implication:

Lh T h] < (<IAR<H)
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Galois Connection

@ We have the Galois Connection:

«(Z) C LA <= Z Cy"([Lh)

Proof.
«(Z) C[1,h] <= [minZ max Z] C [1, h] def. o
< l<minZAmaxZ<h def. C
«— 7ZC{seZ|l<s<h} def. min&max
— Z Cy"([Ln) def. v
o By defining

|_| [li, hil = [minier L, maxier hil
iel
, Galois connection preserves least upper bounds
o Jzo) = |(z))
1€l i€l
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The Interval Semantics in Fixpoint Form

@ Define [min Z;, max ;] U o ' o post[t] oy (1) C FH(D)
@ Establish semi-commutation property

o (F22)) E T« (2))

«(F2(2)) = «(Z; Upost[t]Z) def 52
= a7 (Zy) U o (post[t][Z]) Galois Connection
C [min Zi, max ;] U & (post[tl (v («™1(2))))

C 93 (o (2)

© By the fixpoint approximation:

o (T = o (1£p TY) T 1£p TH

Soonho Kong (Carnegie Mellon University) | Basic Concepts of Abstract Interpretation Mar 23, 2011 26 / 35



Convergence Acceleration

In general, 1f FH — FH(Pp = [+o0, —0)) diverge. Example, the
PJr n>0v T

transition system
(Z,{0}, {{(x,x") | x' =x+1})

of program x := 0; while true do x := x + 1.
FHLA) =10,00UL+1,h+1]

It diverges: [+o00, —o0], [0,0], [0,1], [0,2], ...
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Widening

To accelerate convergence, introduce a widening s/ such that,
XEXVYJAYEXVY)
I° = ¢ = [+00, —o0]

=1 if s cm
=I"v ”JT(I“) otherwise.

limit I* is finite(A € N) and is a fixpoint overapproximation

1ifpFHCc
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Example of Widening

An example of interval widening

@ choosing finite sequence

—0 =T <11 < - < T =400

[++00, —oo] 7 [1, h] = [1, h]
(Lhl 7 [/, h/] = [if 1 > 1’ then max{riJr; <1’} else 1,
if h < h/ then min{ri|h’ < ri} else h]
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Example of Widening

Example, the transition system
(Z,{0}, {{x,x") | x" =x+1})
of program x := 0; while x < 100 do x := x + 1.

FH([L W) = 10,0l U 1+ 1, min(99, h) + 1]

Q Sequencet=—0<-1<0<1< o

(2]
1° = [+00, —00]
' =10,00U[L,1] =[0,1]
I? =1[0,1] U0, 2] = [0, +00]
2 = [0, +00]
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Narrowing

The limit of an iteration with widening can be improved by a narrowing A,
such that

YCX=YLC(XAY)CX

All terms in the iterates with narrowing
IO _ I?\
=T AT
improve the result obtained by widening.

pgHCrc
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Example of Narrowing

LR AL, h]=[if3:1=r; then l" else 1, if Fj: h =1 then h' else h]

Example, the transition system
(Z,{0}, {(x,x") | x" =x+1})
of program x := 0; while x < 100 do x :=x + 1.

J° = [0, +o0]
J1 = [0, +-00] A [0,100] = [0, 100]
J? = [0,100] A [0, 100] = [0, 100]
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Composition of Abstractions

: , . e
The design of three abstractions of the partial trace semantics ~ of a
transition system T was compositional. Composition of Galois connections

is a Galois connection so the successive arguments on sound approximation
do compose nicely.

(X'_'OOC.O(X*,Y*OY.OYH
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Hierarchy of Semantics

The four semantics of a transition system T = (X, Xi, t) form a hierarchy
@ Partial traces Z?
@ Reflexive transitive closure oc*(Z?)
© Reachability «® o o* (£
Q Interval semantics & o x® o oc*(ZT?)
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Thanks

Thank you for listening.
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