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Motivating Example: Reaching Definitions
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A definition d reaches a point p if there is a path
from the point immediately following d to p
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Motivating Example: Reaching Definitions
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Transfer Function (statement-level)

In£§0]
s@ (dO: y:= 3

Out[s@]

What is the relation between In[s0] and Out[s@]!?

Out|so] = fa,(In[s0])
fa(z) = geng U (x — killy)
where

gEng is definition generated: J€ng = {d}

k1llg is set of all other defs to x in the rest of program
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Transfer Function (block-level)
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Meet Operator
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Meet Operator
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and depends on the problem.



Meet Operator
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Boundary Condition
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So far, we have...
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What 1n[B0] should be ?

In[Bo] =1}
It depends on the problem.
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Extracting Constraints
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Transfer Function

| ={dy,ds} U (In|By] — {ds,ds,dg,do})
Out[B1] = {ds,ds} U (In[By] — {do, d1,da,dg})
Out[Bs] = {ds, dg} U (In[Bs] — {d1, ds3})
In[B1] = Out[By)]
In[Bs] = Out[By]
In[B3] = Out[B1] U Out[B;] Meet Operator
In|By| = {} Boundary Condition




Solving Constraints

Transfer Function
Out[Bo] = {d1,d2} U (In[Bo] — {d3,d4,ds, do})
Out[By] = {ds,ds} U (In[B1] — {do, dy, d2, dg})
Out[Bs] = {ds,dg} U (In[Bs] — {d;,ds3})
In|B1] = Out| By
In|Bs] = Out| By
In|B3] = Out[B1] U Out|Bs] Meet Operator
In|By| = {} Boundary Condition

Goal: Find (In[BO]a In[Bl]a In[BZ]a In[B?)]? OUt[BO]v OUt[Bl]v OUt[BQ])
satisfying the above constraints.
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Do we have a solution for this problem!? If it is, how can we
compute it!...



Basic Fixpoint Theorems

If 7 is monotonic, then it has a least fixpoint, Ifp Z [T(Z)] and a
greatest fixpoint, gfp Z [7(Z)].

gfp Z [7(2)] = U{Z | 7(Z) = Z} whenever T is monotonic.

gfp Z |7(Z)| = nit*(T'rue) whenever 7 is also N-continuous.



Least Fixpoint Algorithm

from the last |ecture...

R

As a consequence of the preceding lemmas, if 7 is monotonic, its least
fixpoint can be computed by the following program.

function Lfp(Tau : Predicate Transformer)
begin

Q := False;

Q" :=Tau(Q);

while (Q # Q') do

begin

Q:=Q

Q = Tau(Q')
end;
return()

end
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Do we have a solution for this problem!? If it is, how can we
compute it! Can we get a solution within finite time?
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THIS IS A FIXED POINT PROBLEM
F(IR[B()], In[Bl], ]n[BQ], [n[Bg], Out[Bo], Out[Bl], Out[BQ]) —
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Do we have a solution for this problem!? If it is, how can we
compute it! Can we get a solution within finite time?

Yes, we have a solution only if ./ is monotone.

Yes, we can compute a solution only if F is continuous.

Yes, we can compute a solution in finite time only if we the
domain has descending chain condition(DCQ).

F - V7 — V7 is monotone, continuous, and the domain has DCC.
Why?



Solving Constraints

THIS IS A FIXED POINT PROBLEM
‘7?(]51[130],]71[131],]71[132],]71[133],()Qttffgo],()thilgl],()lbtflgg]) —

(In[Bo], In[Bl], ]n[BQ], ]n[Bg], Out[B()], Out[Bl], Out[Bg])

Do we have a solution for this problem!? If it is, how can we
compute it! Can we get a solution within finite time?

Yes, we have a solution only if / is monotone.
Yes, we can compute a solution only if F is continuous.

Algorithm

// Boundary Condition
In[BO] = { }

// Initialization for iterative algorithm
For each basic block

B
Out[B] = { }<pr [T(Z)] = U;7*(False) whenever 7 is also U—continuous;)

// 1iterate
while(Changes to any In[], Out[] occur) { ' N
For each basic block B { In[Bl= | J Ou[B
In[B] = meet(Out[p_0], ... Out[p_11) < B’:pred(B)
Out[B] = f_B(In[BI) Out|so] = f1(In[so])
, } \_ Y,




Solving Constraints

// Boundary Condition
In[BO] = { }

// Initialization for iterative algorithm

For each basic block B )
Out[B] = { }<pr 7(Z)] = U;m*(Ealse) whenever 7 is also U—continuous;)

// 1iterate
while(Changes to any In[], Out[] occur) { N\
For each basic block B { In|B] = U Out|B’]
In[B] = miet(Out[p_Qj, ... Out[p_1DD B/ pred(B)
Out[B] = f_B(In[B '
, [B] (InlB1) Out[so] = f5(In[so)) ,
hy

Does this algorithm terminate! If so, what is complexity?



Solving Constraints

// Boundary Condition
In[BO] = { }

// Initialization for iterative algorithm

For each basic block B )
Out[B] = { }<pr 7(Z)] = U;m*(Ealse) whenever 7 is also U—continuous;)

// 1terate
while(Changes to any In[], Out[] occur) { ~N
For each basic block B { In[B] — U Out[B’]
In[B] = meet(Out[p_0], ... Out[p_1D) B pred(B)
, Out[B] = f_B(In[B]) ()uiLSO]:Z j};([ﬂ{so])
) /

Does this algorithm terminate! If so, what is complexity?

Yes, why! Since F - V7 — V" is monotone, and the domain
has DCC property.



summary: R@AChing Definition

Reaching definition problem is defined by

® Domain of values: V' = tdo,d1,dz,ds,da,d5,de }
® Meetoperator: U:V —V
® Boundary Condition: In|By| = {}

® Set of Transfer Functions:

{mefBlvamegafBszBg,?fBa} : 2V_>V



A Unified Framework

Data flow problems are defined by

® Domain of values: V< meet-semilattice is enough. )

® Meet operator: ‘ V=V

® Boundary Condition: value of entry/exit node

® Set of Transfer Functions: 2V =V



Meet-semilattice =~

A set S partially ordered by the binary relation
if for all x,y, z:

reflexive x C x

anti-symmetric tCL yAyL o — x =1y

transitive * L yAyL z — x L 2

A poset S is meet-semilattice if for all elements

x and y of S, the greatest lower bound of the set
{x, y} exists.

Ve,y e S:dM{x,yt €8

Semi-lattice has the top element.
T e S:VeeS:zC T




Meet-semilattice

® Example: ({d0, dl, d2, d3, d4, d5, dé}, D)
What is ﬂ and | ?



General Iterative Data Flow Analysis Algorithm
(Forward)

// Boundary Condition
Out[Entry] = V_Entry

// Initialization for iterative algorithm
For each basic block B
Out[B] = Top

// 1terate
while(Changes to any Out[], In[] occur) {
For each basic block B {
In[B] = meet(Out[p_0], ... Out[p_1])
Out[B] = f_B(In[B])
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