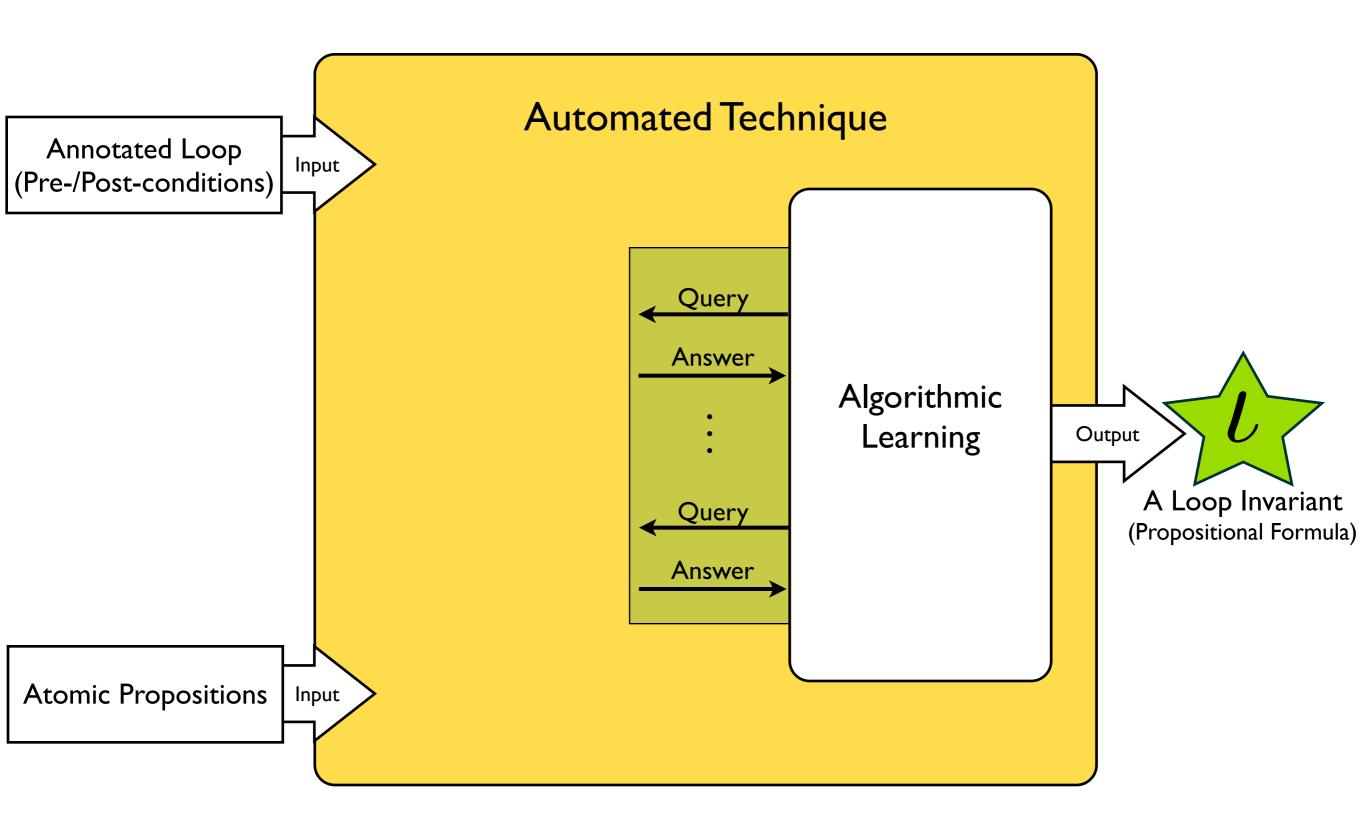
Deriving Invariants by Algorithmic Learning, Decision Procedure, and Predicate Abstraction

Yungbum Jung¹ <u>Soonho Kong</u>¹ Bow-Yaw Wang² Kwangkeun Yi¹ ¹ Seoul National University ² Academia Sinica

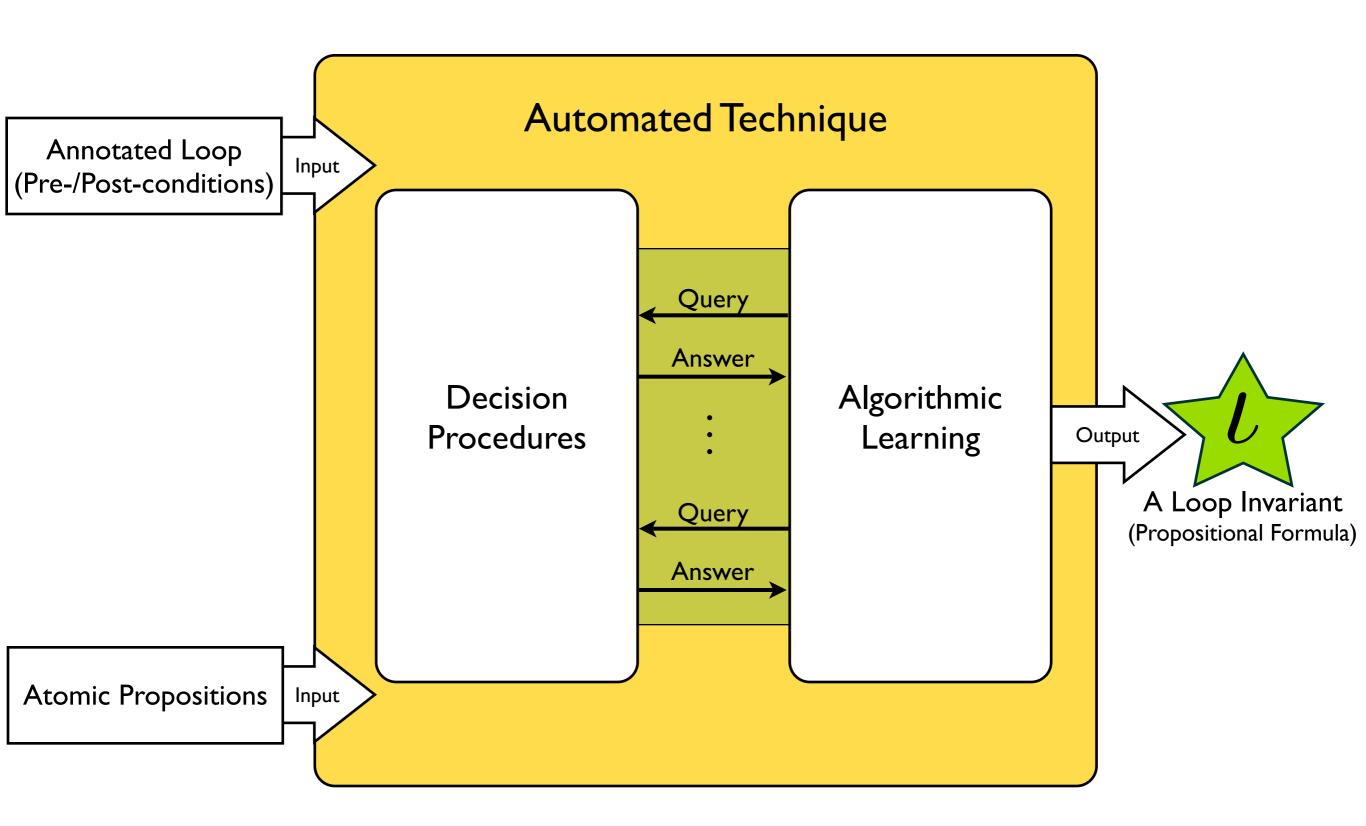
VMCAI'10, 2010/01/18 @ Madrid, Spain

Overview **Automated Technique** Annotated Loop Input (Pre-/Post-conditions) Output A Loop Invariant (Propositional Formula) Atomic Propositions Input

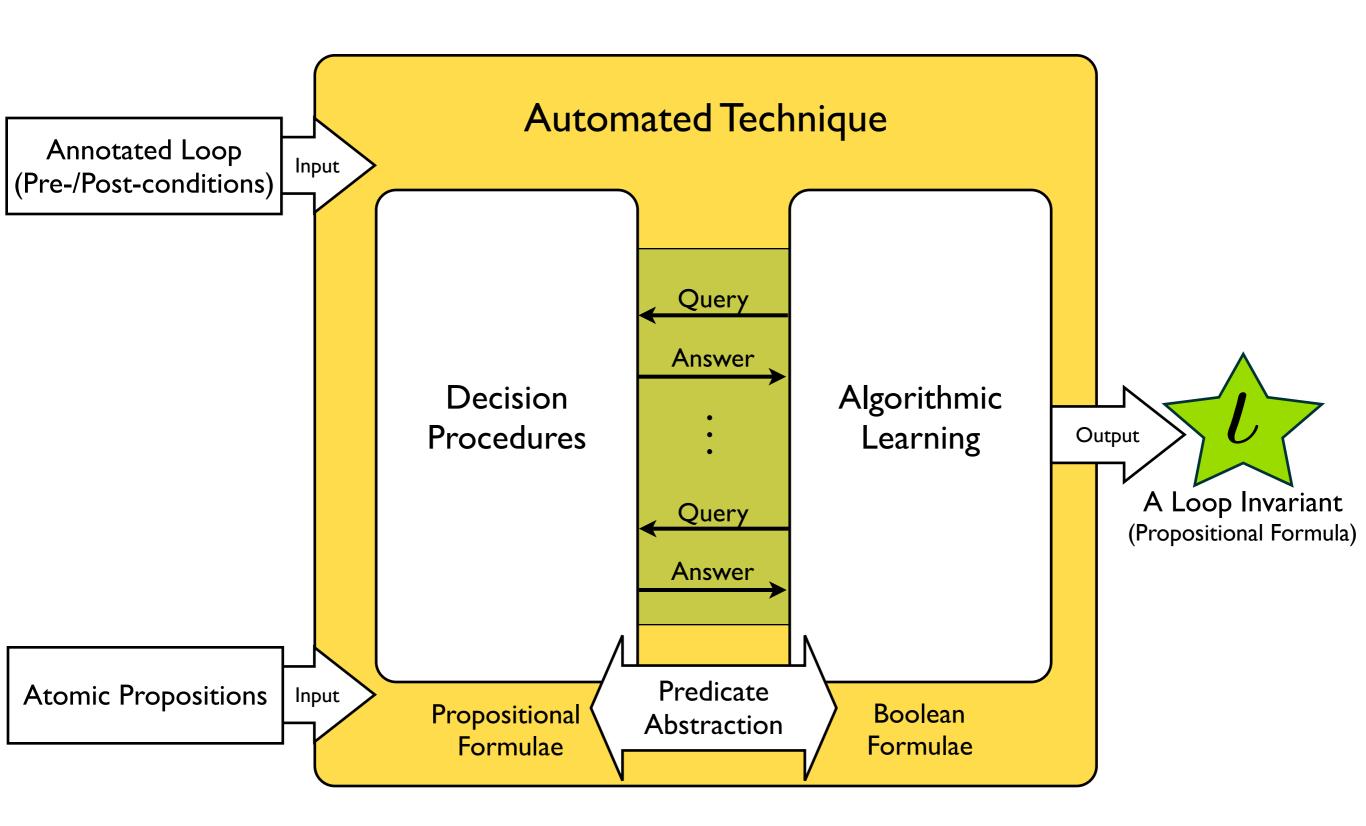
Overview



Overview

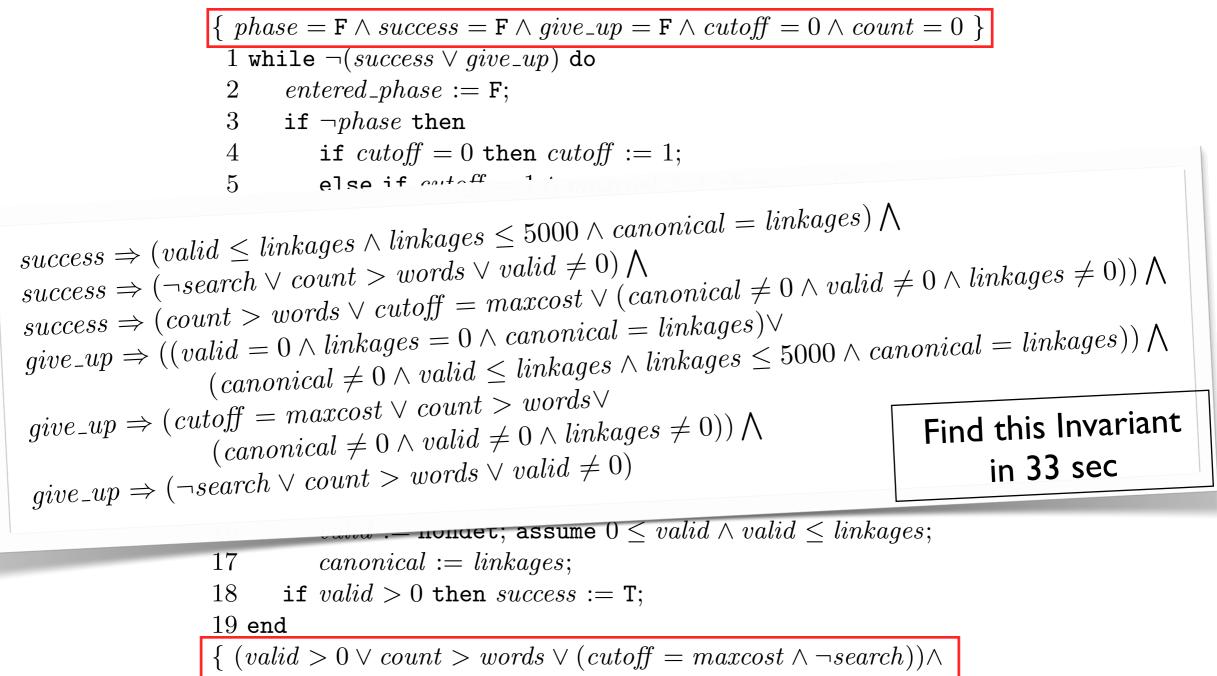


Overview



 $\{ phase = F \land success = F \land give_up = F \land cutoff = 0 \land count = 0 \}$ 1 while $\neg(success \lor give_up)$ do $entered_phase := F;$ 23 if $\neg phase$ then if cutoff = 0 then cutoff := 1;4 else if $cutoff = 1 \land maxcost > 1$ then cutoff := maxcost;5else phase := T; entered_phase := T; cutoff := 1000; 6 if $cutoff = maxcost \land \neg search$ then $give_up := T$; 7 8 else 9 count := count + 1;10 if count > words then $give_up := T$; if $entered_phase$ then count := 1;11 12linkages := nondet;13if linkages > 5000 then linkages := 5000; 14 canonical := 0; valid := 0;if $linkages \neq 0$ then 1516 $valid := nondet; assume 0 < valid \land valid < linkages;$ canonical := linkages;17 18 if valid > 0 then success := T; $19 \, \mathrm{end}$ { $(valid > 0 \lor count > words \lor (cutoff = maxcost \land \neg search)) \land$ $valid \leq linkages \wedge canonical = linkages \wedge linkages \leq 5000$

Fig. 3. A Sample Loop in SPEC2000 Benchmark PARSER with 20 Atomic Propositions (Building Blocks)



 $valid \leq linkages \wedge canonical = linkages \wedge linkages \leq 5000$

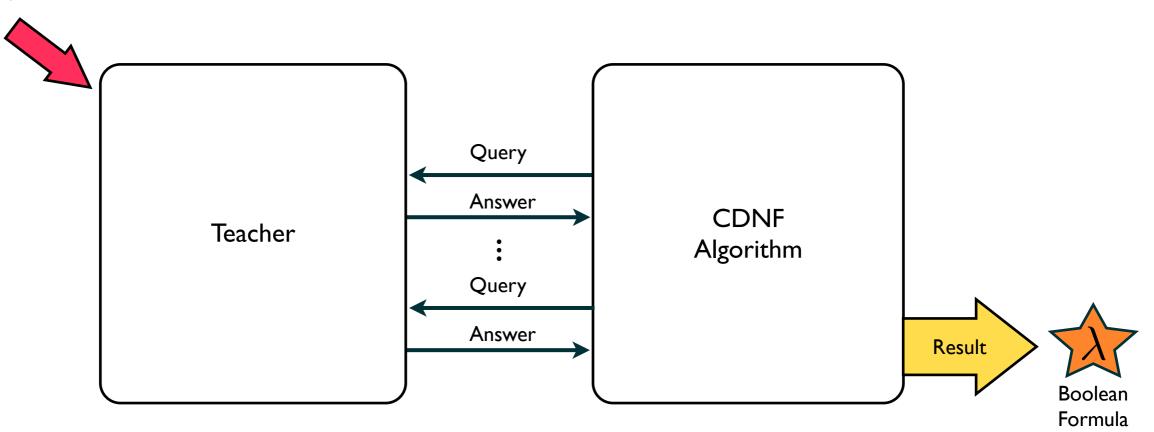
Fig. 3. A Sample Loop in SPEC2000 Benchmark PARSER

with 20 Atomic Propositions (Building Blocks)

Algorithmic Learning: CDNF Algorithm

CDNF Algorithm[†]

Teacher is required



Actively learning a Boolean formula from membership and equivalence queries (polynomial # of queries in $|\lambda|$ and # of variables)

Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Information and Computation 123 (1995) 146–153

Membership Query

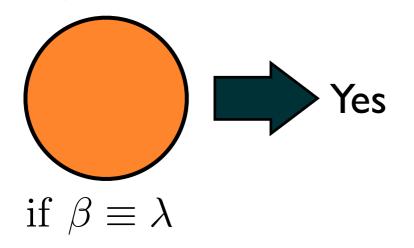
Membership Query $MEM(\mu)$ asks whether Boolean assignment μ satisfies the Boolean formula λ

$$MEM(\mu) = Yes \quad \text{if } \mu \models \lambda$$
$$MEM(\mu) = No \quad \text{if } \mu \not\models \lambda$$

Example: $\lambda = XOR$ function $b_1 \oplus b_2$ $MEM(\{b_1 = T, b_2 = F\}) = Yes \quad \because T \oplus F = T$ $MEM(\{b_1 = T, b_2 = T\}) = No \quad \because T \oplus T = F$

Equivalence Query

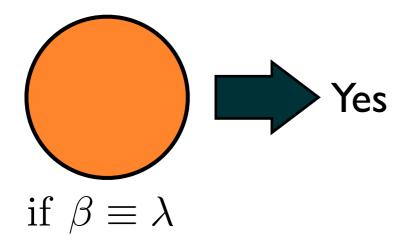
Equivalence Query $EQ(\beta)$ asks whether the guessed Boolean formula β is equivalent to λ .



Example: $\lambda = XOR$ function $b_1 \oplus b_2$ $EQ(b_1 \land \neg b_2 \lor \neg b_1 \land b_2) = Yes$

Equivalence Query

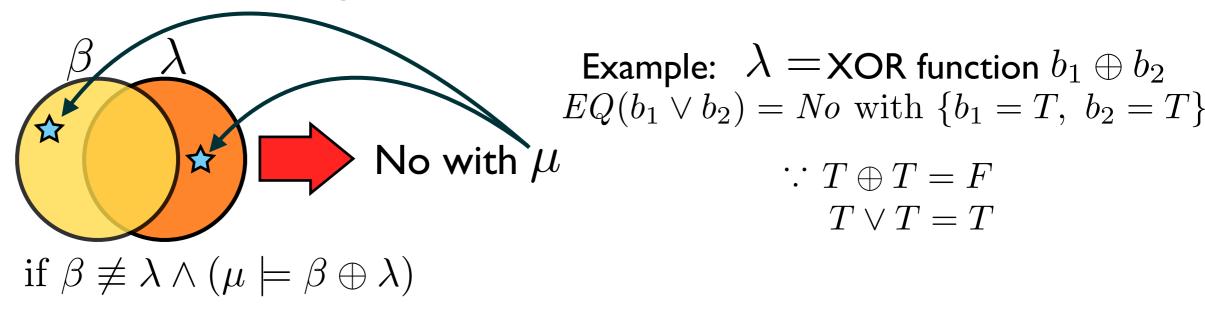
Equivalence Query $EQ(\beta)$ asks whether the guessed Boolean formula β is equivalent to λ .



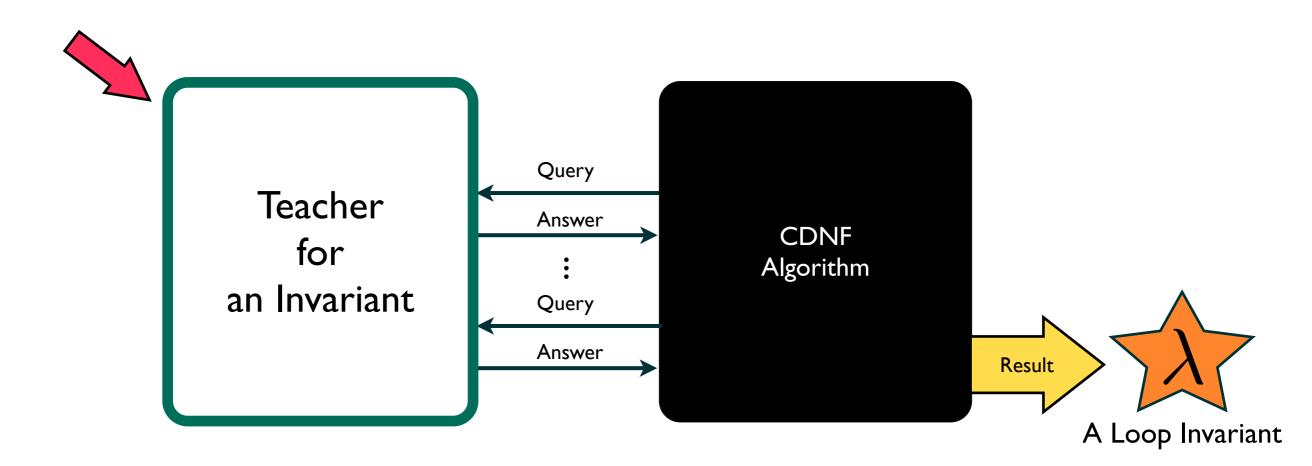
Example: $\lambda = XOR$ function $b_1 \oplus b_2$ $EQ(b_1 \wedge \neg b_2 \vee \neg b_1 \wedge b_2) = Yes$

 $T \lor T = T$

Otherwise, the teacher needs to provide a truth assignment as a counterexample μ .



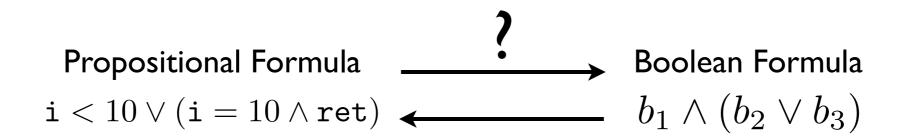
Goal



Implement a Teacher to guide CDNF algorithm infer an Invariant

Problem:

We want to find a Propositional invariant while the CDNF algorithm finds a Boolean formula.



Solution:

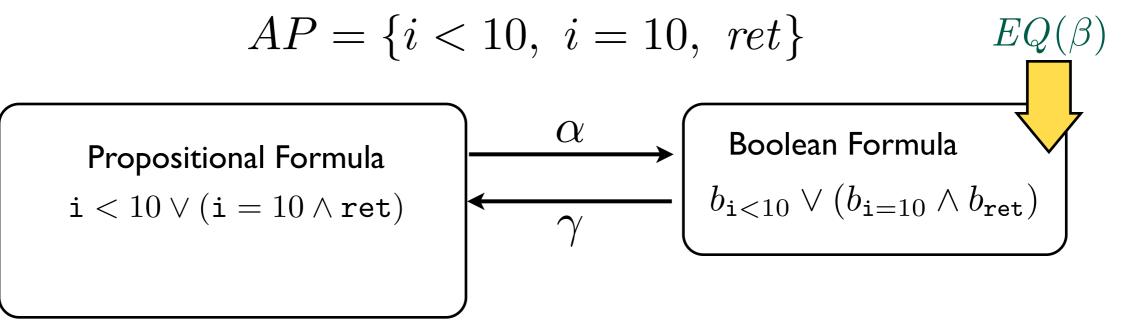
Use predicate abstraction with given atomic propositions.

$$AP = \{i < 10, i = 10, ret\} \qquad EQ(\beta)$$

Boolean Formula
$$b_{i < 10} \lor (b_{i=10} \land b_{ret})$$

Solution:

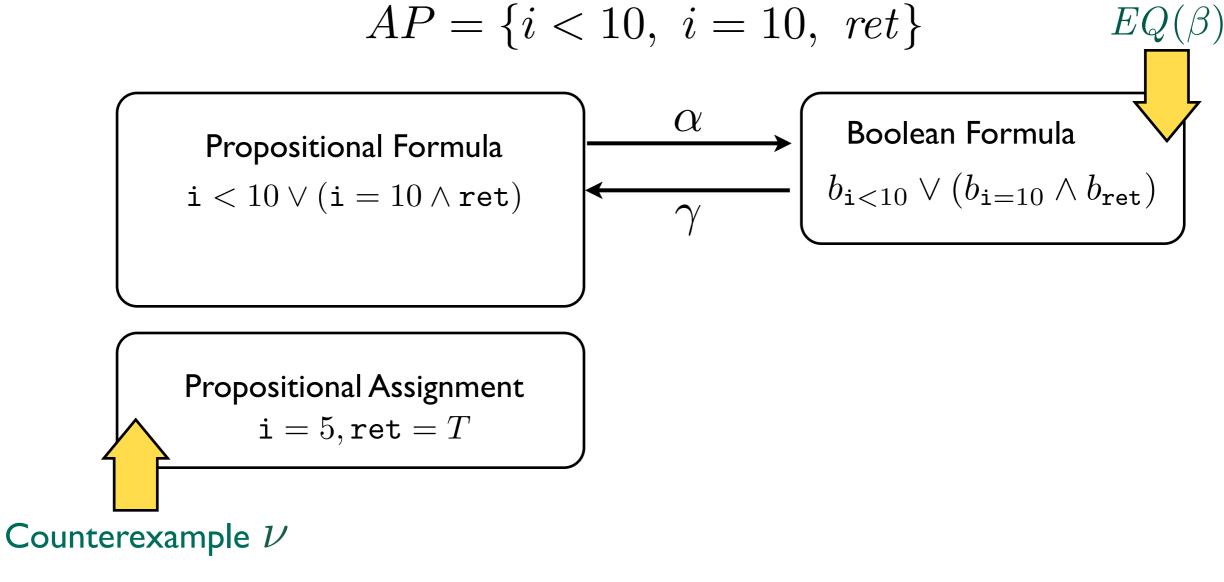
Use predicate abstraction with given atomic propositions.



SMT Solver

Solution:

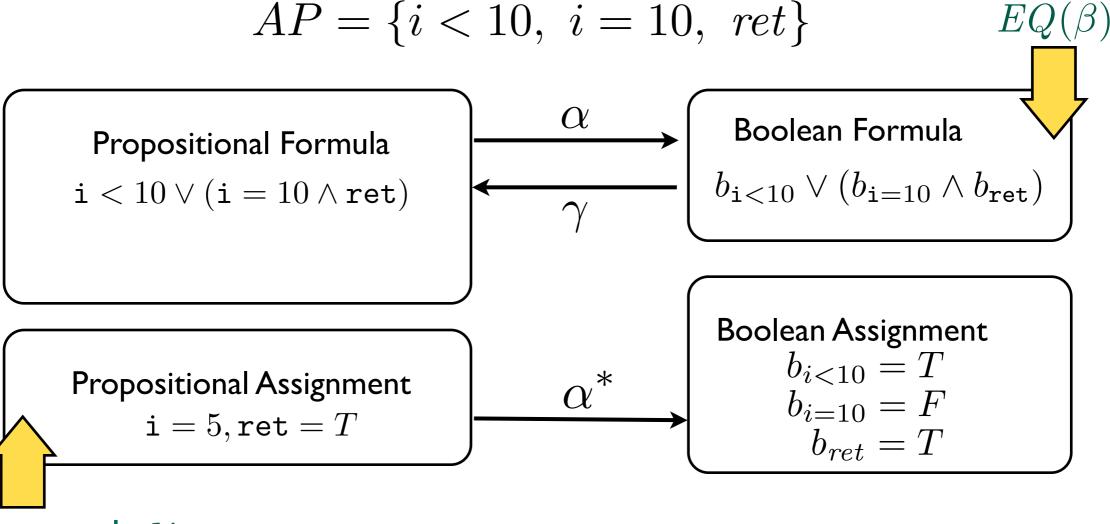
Use predicate abstraction with given atomic propositions.



SMT Solver

Solution:

Use predicate abstraction with given atomic propositions.

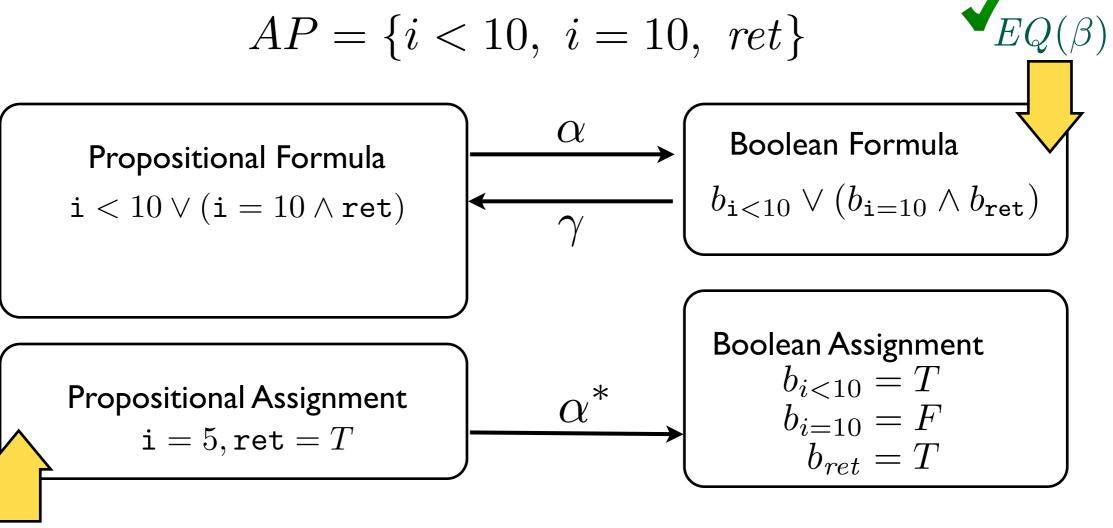


Counterexample \mathcal{V}

SMT Solver

Solution:

Use predicate abstraction with given atomic propositions



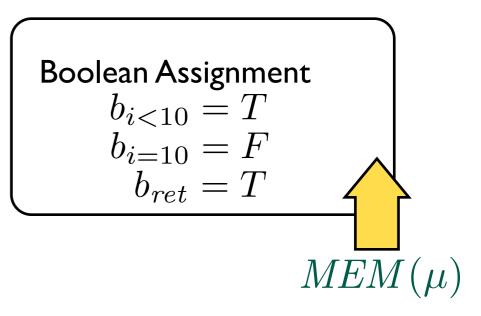
Counterexample \mathcal{V}

SMT Solver

Solution:

Use predicate abstraction with given atomic propositions.

$$AP = \{i < 10, i = 10, ret\}$$

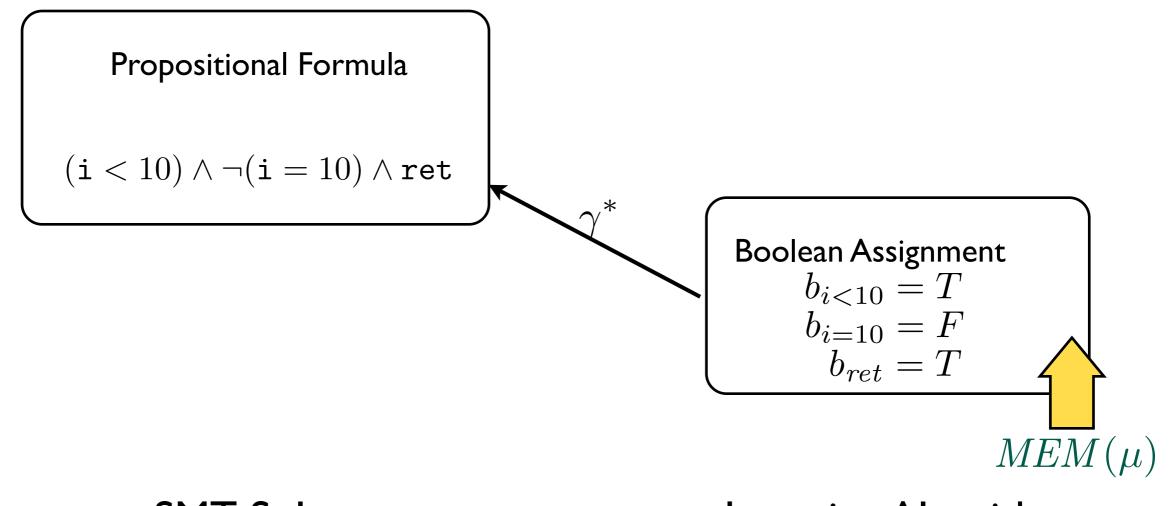


SMT Solver

Solution:

Use predicate abstraction with given atomic propositions.

$$AP = \{i < 10, i = 10, ret\}$$

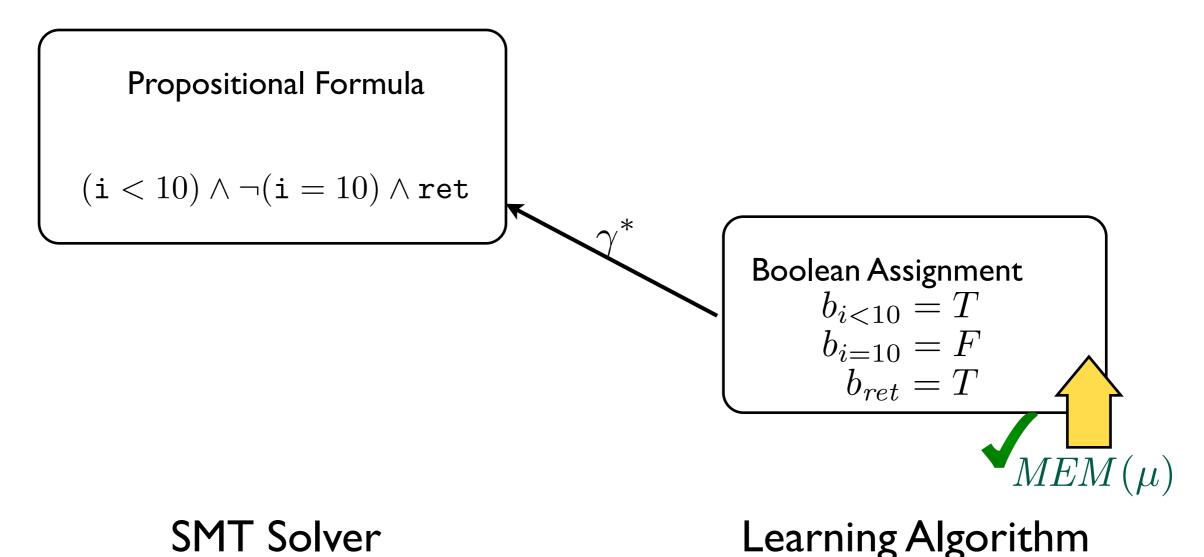


SMT Solver

Solution:

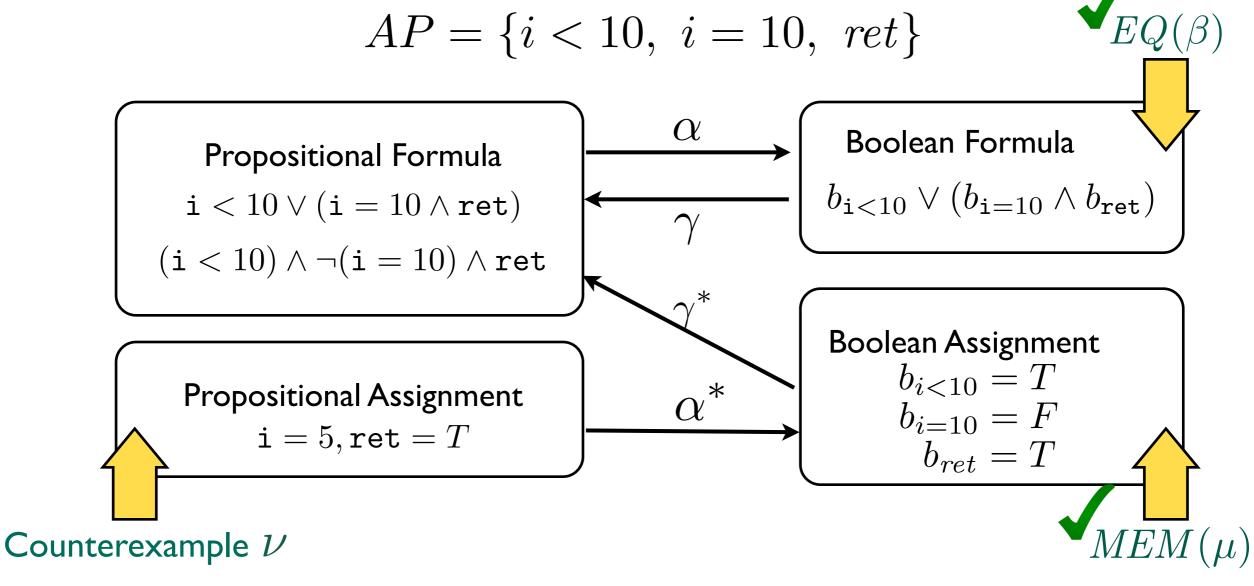
Use predicate abstraction with given atomic propositions.

$$AP = \{i < 10, i = 10, ret\}$$



Solution:

Use predicate abstraction with given atomic propositions



SMT Solver

How to Answer Queries

Problem

The teacher is asked to answer the question about invariants without knowing invariants..

Invariant Properties

For the annotated loop

```
\{\delta\} while \rho \mbox{ do }S \mbox{ end }\{\epsilon\}
```

An Invariant I must satisfy the following conditions:

(A) $\delta \Rightarrow \iota$ (ι holds when entering the loop)

- (B) $\iota \wedge \rho \Rightarrow Pre(\iota, S)$ (ι holds at each iteration)
- (C) $\iota \land \neg \rho \Rightarrow \epsilon$ (ι gives ϵ after leaving the loop)

Observation #I In $EQ(\beta)$ we can say "YES" by checking three conditions.

Invariant Properties

For the annotated loop

```
\{\delta\} while \rho do S end \{\epsilon\}
```

An Invariant I must satisfy the following conditions:

(A) $\delta \Rightarrow \iota$ (ι holds when entering the loop) (B) $\iota \land \rho \Rightarrow Pre(\iota, S)$ (ι holds at each iteration) (C) $\iota \land \neg \rho \Rightarrow \epsilon$ (ι gives ϵ after leaving the loop)

Observation #1 In $EQ(\beta)$ we can say "YES" by checking three conditions.

Observation #2

 $\delta \Rightarrow I \Rightarrow \epsilon \lor \rho$

strongest under-approximation over-approximation of an invariant

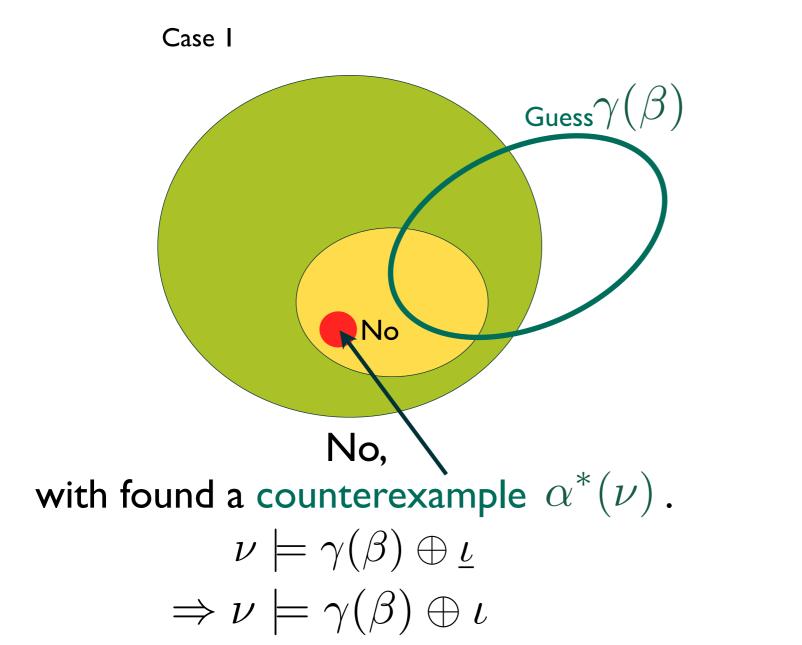
weakest of an invariant

I. "YES", if $\gamma(\beta)$ satisfies invariant conditions.

(A) $\delta \Rightarrow \iota$ (ι holds when entering the loop) (B) $\iota \land \rho \Rightarrow Pre(\iota, S)$ (ι holds at each iteration) (C) $\iota \land \neg \rho \Rightarrow \epsilon$ (ι gives ϵ after leaving the loop)

Then, we find an invariant!

I. "YES", if $\gamma(\beta)$ satisfies invariant conditions.

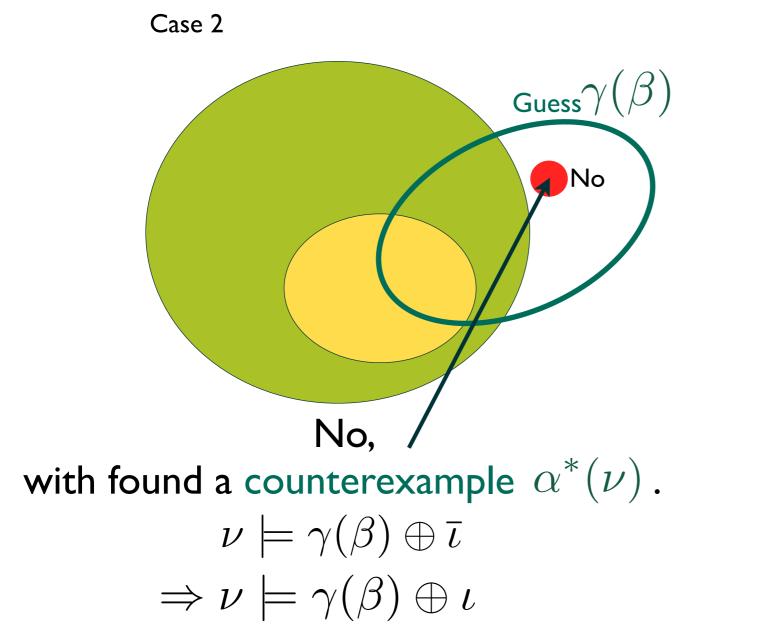


Over Approximation

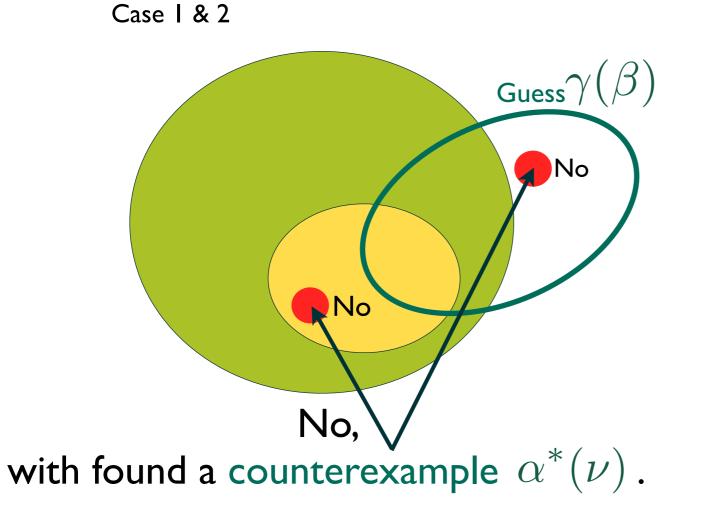
Under Approximation l

1,

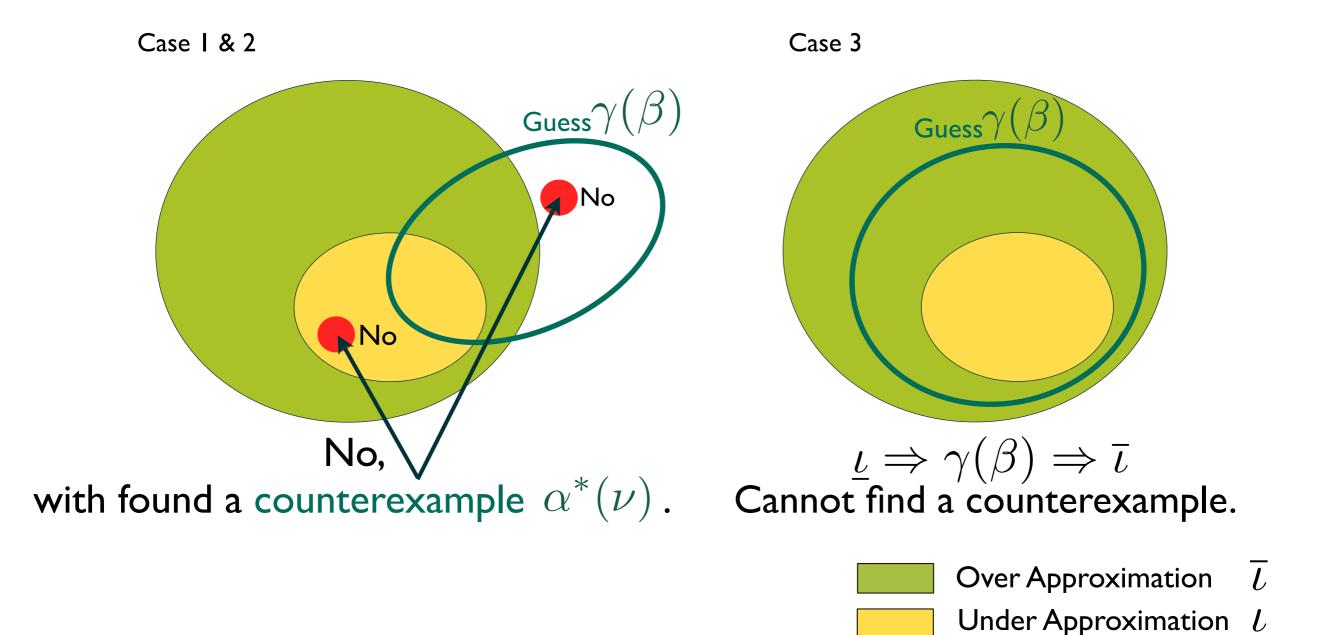
I. "YES", if $\gamma(\beta)$ satisfies invariant conditions.



I. "YES", if $\gamma(\beta)$ satisfies invariant conditions.

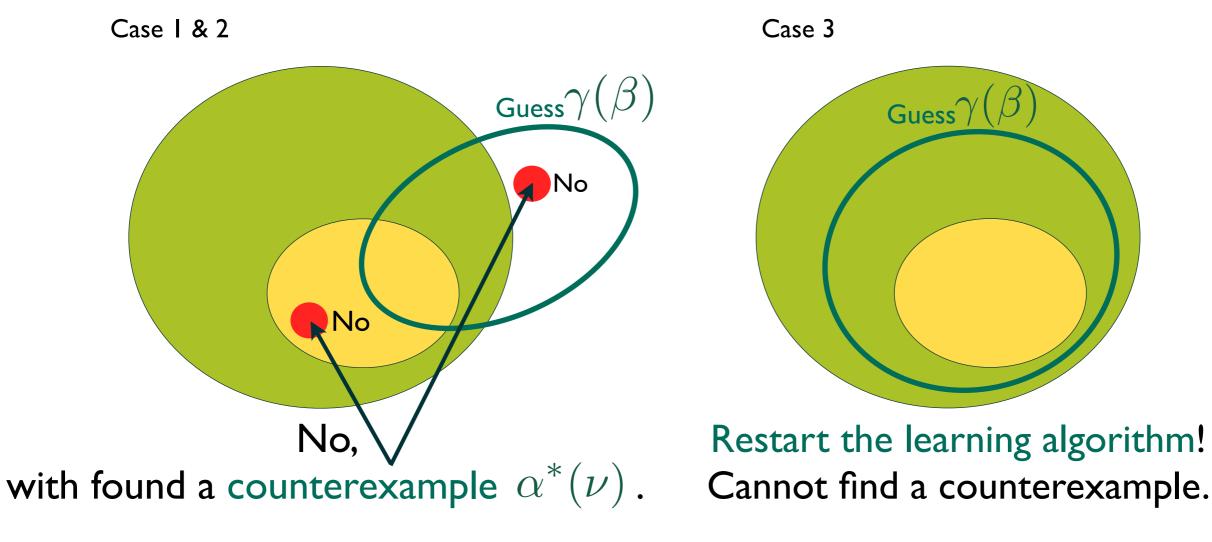


I. "YES", if $\gamma(\beta)$ satisfies invariant conditions.



I. "YES", if $\gamma(\beta)$ satisfies invariant conditions.

2. Otherwise, we need a counter example to answer "No".



Over Approximation \overline{l} Under Approximation \underline{l}

Membership Query Resolution: $MEM(\mu)$

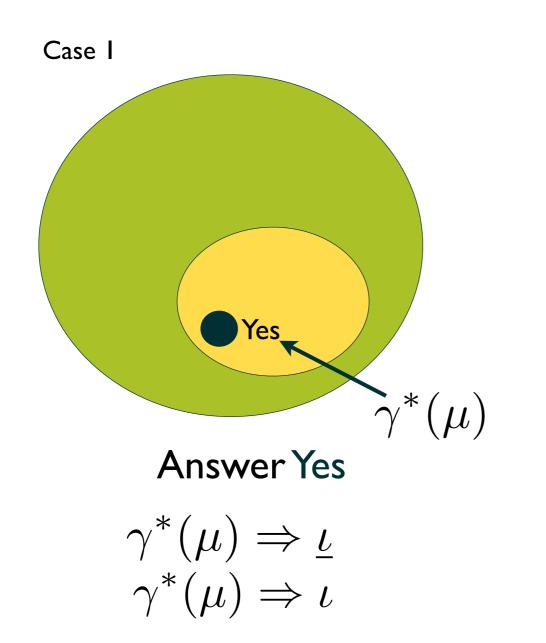
I."NO", if $\gamma^*(\mu)$ is unsatisfiable.

$$\mu = \{b_{i=0} = T, \ b_{i<10} = F\}$$
$$\gamma^*(\mu) = (i = 0 \land \neg(i < 10))$$

Membership Query Resolution: $MEM(\mu)$

I."NO", if $\gamma^*(\mu)$ is unsatisfiable.

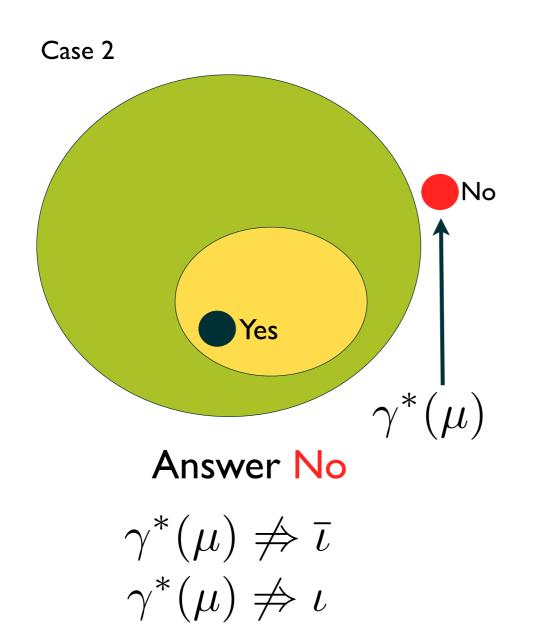
2. Use approximations to answer the query.



Membership Query Resolution: $MEM(\mu)$

I."NO", if $\gamma^*(\mu)$ is unsatisfiable.

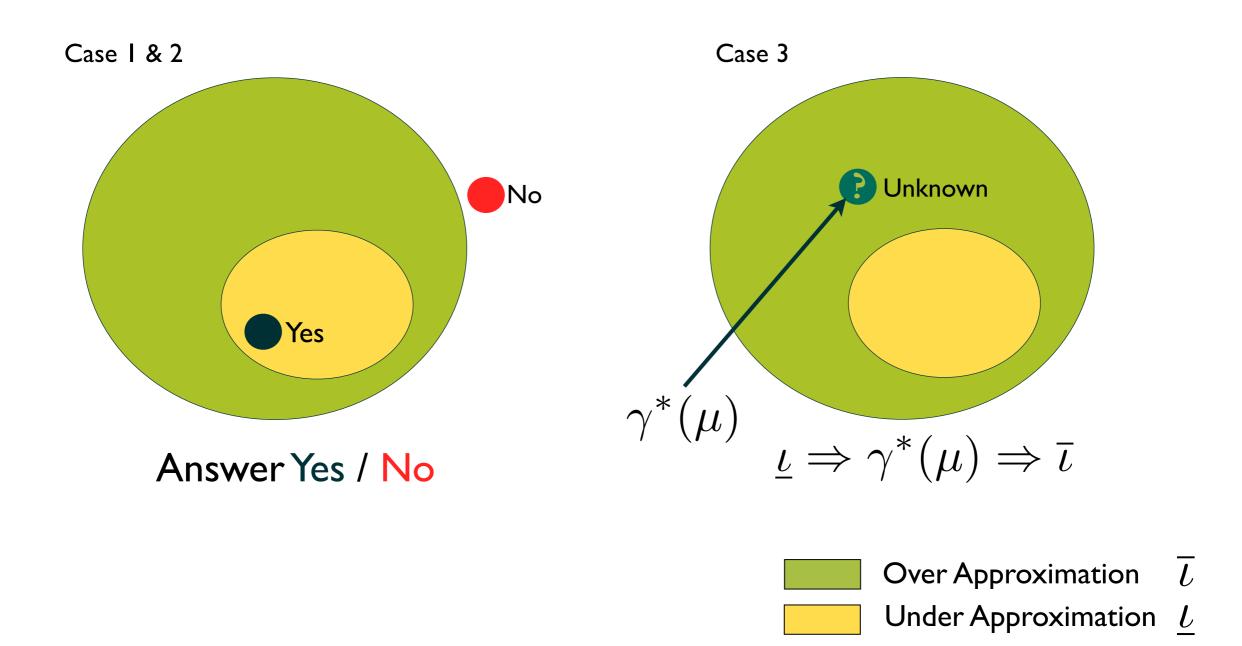
2. Use approximations to answer the query.



Membership Query Resolution: $MEM(\mu)$

I."NO", if $\gamma^*(\mu)$ is unsatisfiable.

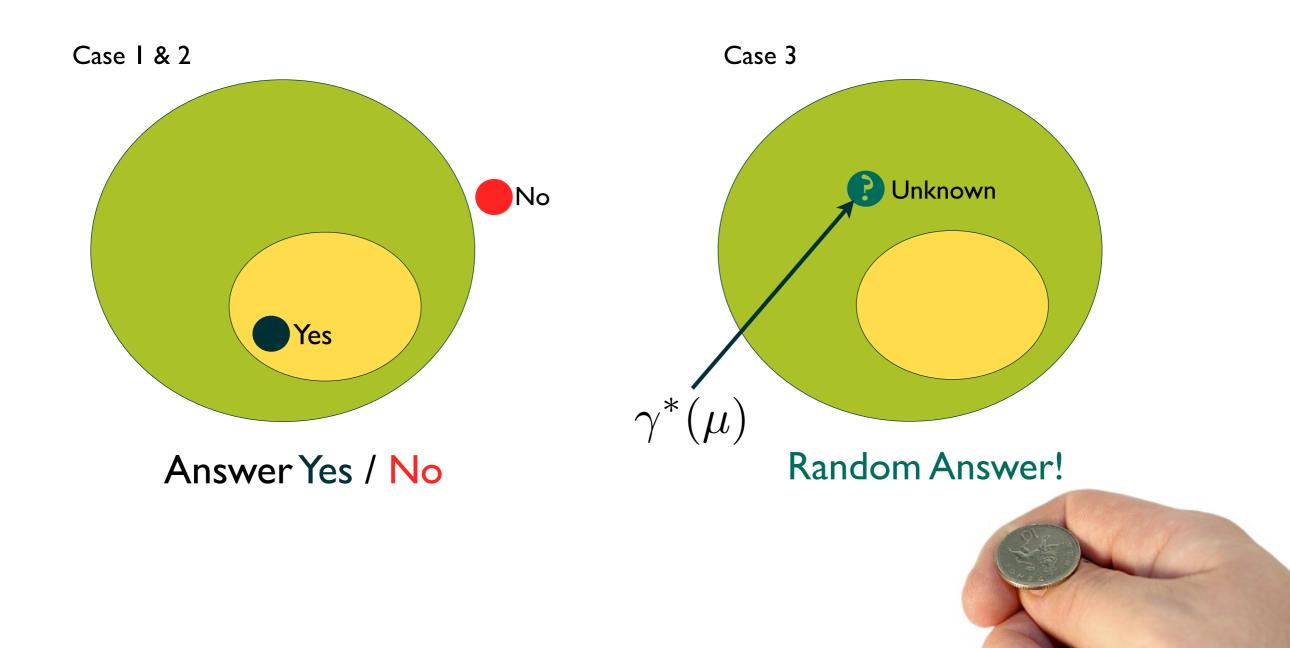
2. Use approximations to answer the query.



Membership Query Resolution: $MEM(\mu)$

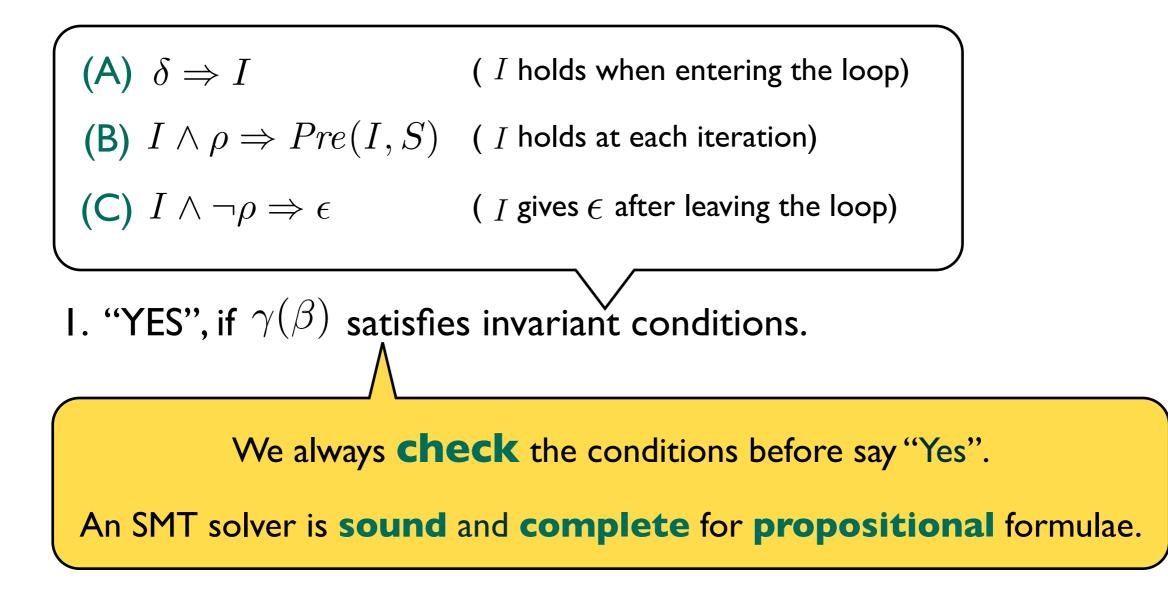
I."NO", if $\gamma^*(\mu)$ is unsatisfiable.

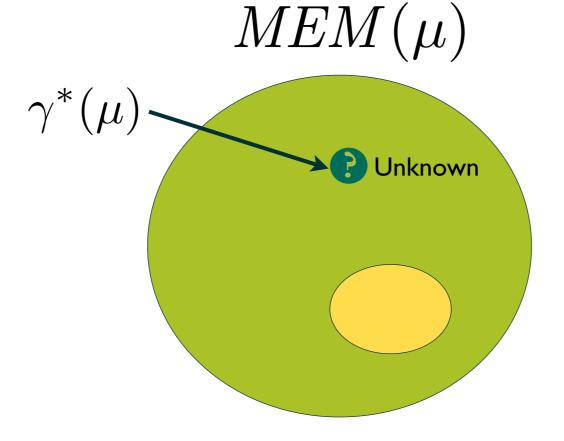
2. Use approximations to answer the query.



It's still Sound

Why? When resolving equivalence query $EQ(\beta)$

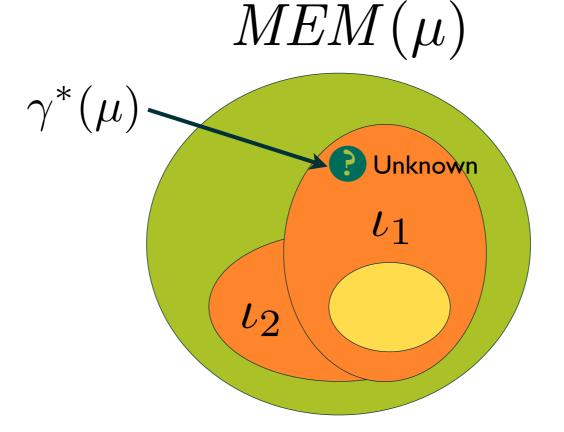




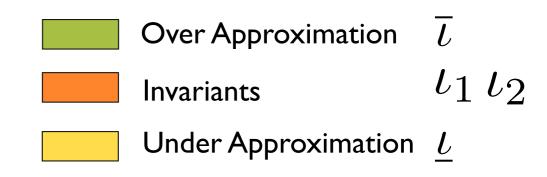


Over Approximation Ī

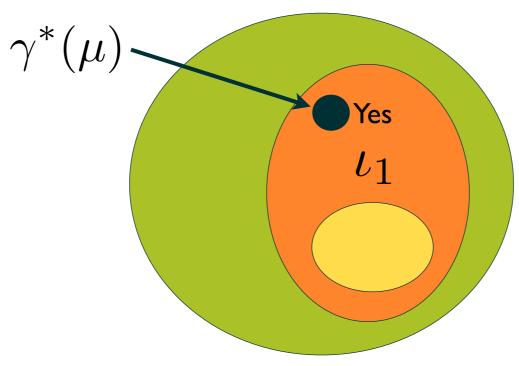
Under Approximation l



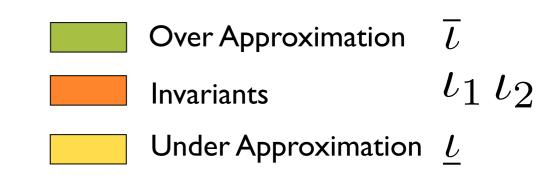
Both of the random answers can lead to an invariant.

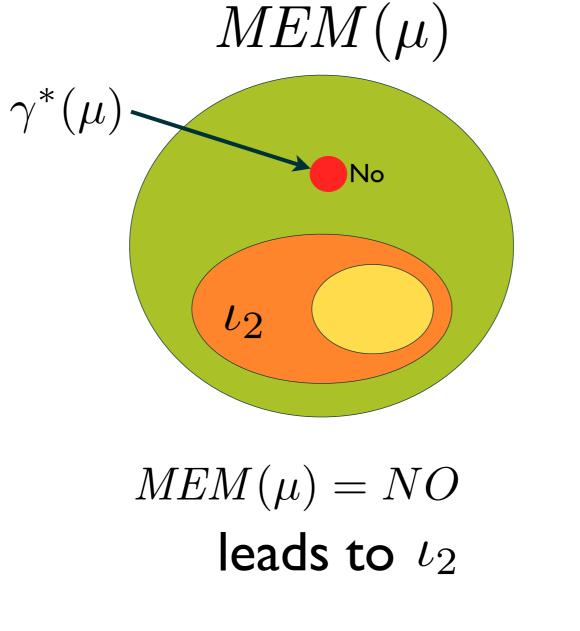


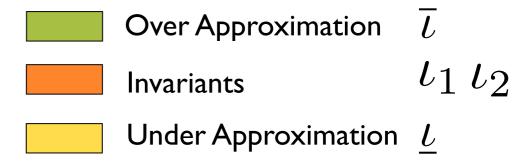
 $MEM(\mu)$



$MEM(\mu) = YES$ leads to ι_1







Invariants are Not Unique

```
 \{ \texttt{locked} \land \texttt{i} = 0 \} 
while <code>i < entries && status = 0 do</code>
retval <code>:= nondet</code>
locked <code>:= false;</code>
switch retval do
case <code>ENXIO: retval := 0;</code>
case <code>EAGAIN: retval := 0;</code>
case <code>EAGAIN: retval := 0;</code>
case <code>0: i := i + 1;</code>
end
locked <code>:= true;</code>
if retval <code>!= 0 && (status = 0 || status = ECONNRESET) then
status := retval;
end
locked \land (i \neq 0 \Rightarrow status = retval) \} </code>
```

```
. ((io\_status = retval \land io\_status = 0) \lor (io\_status = retval \land retval \neq 0 \land io\_lock) \lor (i = 0 \land io\_lock)) \land ((i < entries) \lor io\_lock)
```

 $\textbf{2. io_lock} \land (\texttt{i} = 0 \lor (\texttt{io_status} = 0 \land \texttt{io_status} = \texttt{retval}) \lor (\texttt{retval} \neq 0 \land \texttt{io_status} = \texttt{retval}))$

Experiments

Performance Table							
Case	AP	MEM	EQ	Coin Toss	Restarts	Time(sec)	
ide-ide-tape	6	18.2	5.2	4.1	1.2	0.055	
ide-wait-ireason	6	216.1	111.8	47.2	9.9	0.602	
parser	20	6694.5	819.4	990.3	12.5	32.120	
usb-message	10	20.1	6.8	١.0	١.0	0.128	
vpr	7	14.5	8.9	11.8	2.9	0.055	

Experiments

Performance Table							
Case	AP	MEM	EQ	Coin Toss	Restarts	Time(sec)	
ide-ide-tape	6	18.2	5.2	4.I	1.2	0.055	
ide-wait-ireason	6	216.1	111.8	47.2	9.9	0.602	
parser	20	6694.5	819.4	990.3	12.5	32.120	
usb-message	10	20.1	6.8	١.0	١.0	0.128	
vpr	7	14.5	8.9	11.8	2.9	0.055	

I. Search Space is Huge, naive search shouldn't work $\#AP = 20 \Rightarrow |S| = 2^{2^{20}}$

Experiments

	Performance Table							
	Case	AP	MEM	EQ	Coin Toss	Restarts	Time(sec)	
	ide-ide-tape	6	18.2	5.2	4.1	١.2	0.055	
	ide-wait-ireason	6	216.1	111.8	47.2	9.9	0.602	
	parser	20	6694.5	819.4	990.3	12.5	32.120	
	usb-message	10	20.1	6.8	١.0	١.0	0.128	
	vpr	7	14.5	8.9	11.8	2.9	0.055	

I. Search Space is Huge, naive search shouldn't work $\#AP = 20 \Rightarrow |S| = 2^{2^{20}}$

2. Multitude of Invariants

990.3 / 12.5 = 79.5 Coin Toss / Restarts If there is only one "the invariant", then we need $2^{79.5}$ restarts.

Conclusion

- Algorithmic Learning + Decision Procedures + Predicate Abstraction
 => Invariant Generation Technique
- Works in realistic settings (Linux device drivers and SPEC 200 Benchmarks)
- Exploits the flexibility in invariants by randomized mechanism.
- Static/Dynamic Analysis can help.
 More accurate approximations reduce number of restarts(EQ) and random answers(MEM).

Thank You