
Deriving Invariants by Algorithmic Learning,
Decision Procedure, and Predicate Abstraction

Yungbum Jung1 Soonho Kong1 Bow-Yaw Wang2 Kwangkeun Yi1

1 Seoul National University 2 Academia Sinica

VMCAI’10, 2010/01/18 @ Madrid, Spain

Overview

Automated Technique

Output

A Loop Invariant
(Propositional Formula)

ι

Input
Annotated Loop

(Pre-/Post-conditions)

InputAtomic Propositions

Automated Technique

Overview

Input
Annotated Loop

(Pre-/Post-conditions)

InputAtomic Propositions

Algorithmic
Learning

Query

Answer

Query

Answer
. .

.

Output

A Loop Invariant
(Propositional Formula)

ι

Automated Technique

Overview

Input
Annotated Loop

(Pre-/Post-conditions)

InputAtomic Propositions

Decision
Procedures

Algorithmic
Learning

Query

Answer

Query

Answer
. .

.

Output

A Loop Invariant
(Propositional Formula)

ι

Automated Technique

Overview

Input
Annotated Loop

(Pre-/Post-conditions)

Decision
Procedures

Algorithmic
Learning

Query

Answer

Query

Answer
. .

.

Predicate
Abstraction Boolean

Formulae
Propositional

 Formulae

InputAtomic Propositions

Output

A Loop Invariant
(Propositional Formula)

ι

{ phase = F ∧ success = F ∧ give up = F ∧ cutoff = 0 ∧ count = 0 }
1 while ¬(success ∨ give up) do
2 entered phase := F;
3 if ¬phase then
4 if cutoff = 0 then cutoff := 1;
5 else if cutoff = 1 ∧maxcost > 1 then cutoff := maxcost ;
6 else phase := T; entered phase := T; cutoff := 1000;
7 if cutoff = maxcost ∧ ¬search then give up := T;
8 else
9 count := count + 1;

10 if count > words then give up := T;
11 if entered phase then count := 1;
12 linkages := nondet;
13 if linkages > 5000 then linkages := 5000;
14 canonical := 0; valid := 0;
15 if linkages �= 0 then
16 valid := nondet; assume 0 ≤ valid ∧ valid ≤ linkages;
17 canonical := linkages;
18 if valid > 0 then success := T;
19 end
{ (valid > 0 ∨ count > words ∨ (cutoff = maxcost ∧ ¬search))∧
valid ≤ linkages ∧ canonical = linkages ∧ linkages ≤ 5000 }

Fig. 3. A Sample Loop in SPEC2000 Benchmark PARSER

conjunct of postcondition). Despite the complexity of the postcondition and the
while body, our approach is able to compute an invariant in 13 iterations on
average. The execution time and number of iterations vary significantly. They
range from 2.22s to 196.52s and 1 to 84 with standard deviations 31.01 and 13.33
respectively. By Chebyshev’s inequality [27], our technique infers an invariant
within two minutes with probability 0.876.

One of the found invariants is the following:

success ⇒ (valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical = linkages)
�

success ⇒ (¬search ∨ count > words ∨ valid �= 0)
�

success ⇒ (count > words ∨ cutoff = maxcost ∨ (canonical �= 0 ∧ valid �= 0 ∧ linkages �= 0))
�

give up ⇒ ((valid = 0 ∧ linkages = 0 ∧ canonical = linkages)∨
(canonical �= 0 ∧ valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical = linkages))

�

give up ⇒ (cutoff = maxcost ∨ count > words∨
(canonical �= 0 ∧ valid �= 0 ∧ linkages �= 0))

�

give up ⇒ (¬search ∨ count > words ∨ valid �= 0)

This invariant describes the conditions when success or give up are true. For
instance, it specifies that valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical =
linkages should hold if success is true. In Figure 3, we see that success is assigned
to T at line 18 when valid is positive. Yet valid is set to 0 at line 14. Hence line
16 and 17 must be executed. Thus, the first (valid ≤ linkages) and the third

14

with 20 Atomic Propositions (Building Blocks)

{ phase = F ∧ success = F ∧ give up = F ∧ cutoff = 0 ∧ count = 0 }
1 while ¬(success ∨ give up) do
2 entered phase := F;
3 if ¬phase then
4 if cutoff = 0 then cutoff := 1;
5 else if cutoff = 1 ∧maxcost > 1 then cutoff := maxcost ;
6 else phase := T; entered phase := T; cutoff := 1000;
7 if cutoff = maxcost ∧ ¬search then give up := T;
8 else
9 count := count + 1;

10 if count > words then give up := T;
11 if entered phase then count := 1;
12 linkages := nondet;
13 if linkages > 5000 then linkages := 5000;
14 canonical := 0; valid := 0;
15 if linkages �= 0 then
16 valid := nondet; assume 0 ≤ valid ∧ valid ≤ linkages;
17 canonical := linkages;
18 if valid > 0 then success := T;
19 end
{ (valid > 0 ∨ count > words ∨ (cutoff = maxcost ∧ ¬search))∧
valid ≤ linkages ∧ canonical = linkages ∧ linkages ≤ 5000 }

Fig. 3. A Sample Loop in SPEC2000 Benchmark PARSER

conjunct of postcondition). Despite the complexity of the postcondition and the
while body, our approach is able to compute an invariant in 13 iterations on
average. The execution time and number of iterations vary significantly. They
range from 2.22s to 196.52s and 1 to 84 with standard deviations 31.01 and 13.33
respectively. By Chebyshev’s inequality [27], our technique infers an invariant
within two minutes with probability 0.876.

One of the found invariants is the following:

success ⇒ (valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical = linkages)
�

success ⇒ (¬search ∨ count > words ∨ valid �= 0)
�

success ⇒ (count > words ∨ cutoff = maxcost ∨ (canonical �= 0 ∧ valid �= 0 ∧ linkages �= 0))
�

give up ⇒ ((valid = 0 ∧ linkages = 0 ∧ canonical = linkages)∨
(canonical �= 0 ∧ valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical = linkages))

�

give up ⇒ (cutoff = maxcost ∨ count > words∨
(canonical �= 0 ∧ valid �= 0 ∧ linkages �= 0))

�

give up ⇒ (¬search ∨ count > words ∨ valid �= 0)

This invariant describes the conditions when success or give up are true. For
instance, it specifies that valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical =
linkages should hold if success is true. In Figure 3, we see that success is assigned
to T at line 18 when valid is positive. Yet valid is set to 0 at line 14. Hence line
16 and 17 must be executed. Thus, the first (valid ≤ linkages) and the third

14

with 20 Atomic Propositions (Building Blocks)

{ phase = F ∧ success = F ∧ give up = F ∧ cutoff = 0 ∧ count = 0 }

1 while ¬(success ∨ give up) do

2 entered phase := F;

3 if ¬phase then

4 if cutoff = 0 then cutoff := 1;

5 else if cutoff = 1 ∧maxcost > 1 then cutoff := maxcost ;

6 else phase := T; entered phase := T; cutoff := 1000;

7 if cutoff = maxcost ∧ ¬search then give up := T;

8 else

9 count := count + 1;

10 if count > words then give up := T;

11 if entered phase then count := 1;

12 linkages := nondet;

13 if linkages > 5000 then linkages := 5000;

14 canonical := 0; valid := 0;

15 if linkages �= 0 then

16 valid := nondet; assume 0 ≤ valid ∧ valid ≤ linkages;

17 canonical := linkages;

18 if valid > 0 then success := T;

19 end

{ (valid > 0 ∨ count > words ∨ (cutoff = maxcost ∧ ¬search))∧

valid ≤ linkages ∧ canonical = linkages ∧ linkages ≤ 5000 }

Fig. 3. A Sample Loop in SPEC2000 Benchmark PARSER

conjunct of postcondition). Despite the complexity of the postcondition and the

while body, our approach is able to compute an invariant in 13 iterations on

average. The execution time and number of iterations vary significantly. They

range from 2.22s to 196.52s and 1 to 84 with standard deviations 31.01 and 13.33

respectively. By Chebyshev’s inequality [27], our technique infers an invariant

within two minutes with probability 0.876.

One of the found invariants is the following:

success ⇒ (valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical = linkages)
�

success ⇒ (¬search ∨ count > words ∨ valid �= 0)
�

success ⇒ (count > words ∨ cutoff = maxcost ∨ (canonical �= 0 ∧ valid �= 0 ∧ linkages �= 0))
�

give up ⇒ ((valid = 0 ∧ linkages = 0 ∧ canonical = linkages)∨

(canonical �= 0 ∧ valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical = linkages))
�

give up ⇒ (cutoff = maxcost ∨ count > words∨

(canonical �= 0 ∧ valid �= 0 ∧ linkages �= 0))
�

give up ⇒ (¬search ∨ count > words ∨ valid �= 0)

This invariant describes the conditions when success or give up are true. For

instance, it specifies that valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical =

linkages should hold if success is true. In Figure 3, we see that success is assigned

to T at line 18 when valid is positive. Yet valid is set to 0 at line 14. Hence line

16 and 17 must be executed. Thus, the first (valid ≤ linkages) and the third

14

Find this Invariant
in 33 sec

Algorithmic Learning:
CDNF Algorithm

CDNF Algorithm

Query

CDNF
Algorithm

Answer

...

Query

Answer

Teacher

Boolean
Formula

λ

Actively learning a Boolean formula
from membership and equivalence queries

(polynomial # of queries in and # of variables)

Teacher is required

Result

Bshouty, N.H.: Exact learning boolean functions via the monotone theory. Information and Computation 123 (1995) 146–153

Deriving Invariants by Algorithmic Learning,
Decision Procedures, and Predicate Abstraction1

Yungbum Jung† and Soonho Kong† and Bow-Yaw Wang‡ and Kwangkeun Yi†

† School of Computer Science and Engineering, Seoul National University

{dreameye,soon,kwang}@ropas.snu.ac.kr
‡ Institute of Information Science, Academia Sinica

bywang@iis.sinica.edu.tw

We present a novel technique for finding loop invariants in propositional formulae by com-

bining algorithmic learning, decision procedures, and predicate abstraction. Given invariant

approximations derived from pre- and post-conditions, our new technique exploits the flexibil-

ity in invariants by a simple randomized mechanism.

Algorithmic learning has been applied to assumption generation in compositional reasoning.

In contrast to traditional techniques, the learning approach does not derive assumptions in an

off-line manner. It instead finds assumptions by interacting with a model checker progressively.

Since assumptions in compositional reasoning are generally not unique, algorithmic learning can

exploit the flexibility in assumptions to attain preferable solutions. Applications in verifying

concurrent systems have been reported.

Finding loop invariants follows a similar pattern. Invariants are often not unique. Indeed,

programmers derive invariants incrementally. They usually have their guesses of invariants in

mind, and gradually refine their guesses by observing program behavior more. Since in practice

there are many invariants for given pre- and post-conditions, programmers have more freedom in

deriving invariants. Yet traditional invariant generation techniques do not exploit the flexibility.

They have a similar impediment to traditional assumption generation.

We report our first findings in applying algorithmic learning to invariant generation. We

show that the three technologies (algorithmic learning, decision procedures, and predicate ab-

straction) can be arranged in concert to derive loop invariants in propositional (or, quantifier-

free) formulae. The new technique is able to generate invariants for some Linux device drivers

and SPEC2000 benchmarks without any help from static or dynamic analyses.

For a while loop, an exact learning algorithm for Boolean formulae searches for invariants

by asking queries. Queries can be resolved (not always, see below) by decision procedures

automatically. Recall that the learning algorithm generates only Boolean formulae but deci-

sion procedures work in propositional formulae. We thus perform predicate abstraction and

concretization to integrate the two components.

In reality, information about loop invariant is incomplete. Queries may not be resolvable

due to insufficient information. One striking feature of our learning approach is to exploit the

flexibility in invariants. When query resolution requires information unavailable to decision

procedures, we simply give a random answer. We surely could use static analysis to compute

soundly approximated information other than random answers. Yet there are so many invariants

for the given pre- and post-conditions. A little bit of incorrect information does not prevent

algorithmic learning from inferring correct invariants. Indeed, the learning algorithm is able to

derive invariants in our experiments by coin tossing.

The technique can be seen as a framework for invariant generation. Static analyzers can

contribute by providing information to algorithmic learning. Ours is hence orthogonal to existing

techniques.

1This work is to be presented at VMCAI’10

Deriving Invariants by Algorithmic Learning,
Decision Procedures, and Predicate Abstraction1

Yungbum Jung† and Soonho Kong† and Bow-Yaw Wang‡ and Kwangkeun Yi†

† School of Computer Science and Engineering, Seoul National University

{dreameye,soon,kwang}@ropas.snu.ac.kr
‡ Institute of Information Science, Academia Sinica

bywang@iis.sinica.edu.tw

We present a novel technique for finding loop invariants in propositional formulae by com-

bining algorithmic learning, decision procedures, and predicate abstraction. Given invariant

approximations derived from pre- and post-conditions, our new technique exploits the flexibil-

ity in invariants by a simple randomized mechanism.

Algorithmic learning has been applied to assumption generation in compositional reasoning.

In contrast to traditional techniques, the learning approach does not derive assumptions in an

off-line manner. It instead finds assumptions by interacting with a model checker progressively.

Since assumptions in compositional reasoning are generally not unique, algorithmic learning can

exploit the flexibility in assumptions to attain preferable solutions. Applications in verifying

concurrent systems have been reported.

Finding loop invariants follows a similar pattern. Invariants are often not unique. Indeed,

programmers derive invariants incrementally. They usually have their guesses of invariants in

mind, and gradually refine their guesses by observing program behavior more. Since in practice

there are many invariants for given pre- and post-conditions, programmers have more freedom in

deriving invariants. Yet traditional invariant generation techniques do not exploit the flexibility.

They have a similar impediment to traditional assumption generation.

We report our first findings in applying algorithmic learning to invariant generation. We

show that the three technologies (algorithmic learning, decision procedures, and predicate ab-

straction) can be arranged in concert to derive loop invariants in propositional (or, quantifier-

free) formulae. The new technique is able to generate invariants for some Linux device drivers

and SPEC2000 benchmarks without any help from static or dynamic analyses.

For a while loop, an exact learning algorithm for Boolean formulae searches for invariants

by asking queries. Queries can be resolved (not always, see below) by decision procedures

automatically. Recall that the learning algorithm generates only Boolean formulae but deci-

sion procedures work in propositional formulae. We thus perform predicate abstraction and

concretization to integrate the two components.

In reality, information about loop invariant is incomplete. Queries may not be resolvable

due to insufficient information. One striking feature of our learning approach is to exploit the

flexibility in invariants. When query resolution requires information unavailable to decision

procedures, we simply give a random answer. We surely could use static analysis to compute

soundly approximated information other than random answers. Yet there are so many invariants

for the given pre- and post-conditions. A little bit of incorrect information does not prevent

algorithmic learning from inferring correct invariants. Indeed, the learning algorithm is able to

derive invariants in our experiments by coin tossing.

The technique can be seen as a framework for invariant generation. Static analyzers can

contribute by providing information to algorithmic learning. Ours is hence orthogonal to existing

techniques.

1This work is to be presented at VMCAI’10

|λ|

Membership Query
Membership Query asks whether
Boolean assignment satisfies the Boolean formula µ λ

MEM (µ)

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Example: XOR function

MEM({b1 = T, b2 = F}) = Yes

MEM({b1 = T, b2 = T}) = No

T ⊕ F = T

T ⊕ T = F

∵

∵

λ = b1 ⊕ b2

Equivalence Query
Equivalence Query asks whether
the guessed Boolean formula is equivalent to ..

EQ(β)
λβ

if β ≡ λ

Yes
EQ(b1 ∧ ¬b2 ∨ ¬b1 ∧ b2) = Yes

Example: XOR functionλ = b1 ⊕ b2

Equivalence Query

if β ≡ λ

Yes

if β �≡ λ ∧ (µ |= β ⊕ λ)

No with µ

β λ

µ
Otherwise, the teacher needs to provide a truth assignment
as a counterexample .

Example: XOR function

Example: XOR function

λ =

λ =

b1 ⊕ b2

b1 ⊕ b2

T ⊕ T = F
T ∨ T = T

∵
EQ(b1 ∨ b2) = No with {b1 = T, b2 = T}

Equivalence Query asks whether
the guessed Boolean formula is equivalent to ..

EQ(β)
λβ

EQ(b1 ∧ ¬b2 ∨ ¬b1 ∧ b2) = Yes

Goal

Query

CDNF
Algorithm

Answer

...

Query

Answer

Teacher
for

an Invariant

A Loop Invariant

λResult

Implement a Teacher
to guide CDNF algorithm infer an Invariant

Predicate Abstraction

Predicate Abstraction

?

We want to find a Propositional invariant
while the CDNF algorithm finds a Boolean formula.

Problem:

b1 ∧ (b2 ∨ b3)
Boolean Formula

i < 10 ∨ (i = 10 ∧ ret)

Propositional Formula

Predicate Abstraction

Use predicate abstraction with given atomic propositions.
Solution:

Boolean Formula

bi<10 ∨ (bi=10 ∧ bret)

EQ(β)

Learning Algorithm

AP = {i < 10, i = 10, ret}

Predicate Abstraction

Use predicate abstraction with given atomic propositions.
Solution:

α

γ

Boolean Formula

i < 10 ∨ (i = 10 ∧ ret)

Propositional Formula
bi<10 ∨ (bi=10 ∧ bret)

EQ(β)

SMT Solver Learning Algorithm

AP = {i < 10, i = 10, ret}

Predicate Abstraction

Use predicate abstraction with given atomic propositions.
Solution:

α

γ

Boolean Formula

i < 10 ∨ (i = 10 ∧ ret)

Propositional Formula
bi<10 ∨ (bi=10 ∧ bret)

Propositional Assignment
i = 5, ret = T

EQ(β)

Counterexample ν

SMT Solver Learning Algorithm

AP = {i < 10, i = 10, ret}

Predicate Abstraction

Use predicate abstraction with given atomic propositions.
Solution:

α

γ

Boolean Formula

i < 10 ∨ (i = 10 ∧ ret)

Propositional Formula

Boolean Assignment

bi<10 ∨ (bi=10 ∧ bret)

α∗Propositional Assignment
i = 5, ret = T

EQ(β)

Counterexample ν

bi<10 = T
bi=10 = F
bret = T

SMT Solver Learning Algorithm

AP = {i < 10, i = 10, ret}

Predicate Abstraction

Use predicate abstraction with given atomic propositions.
Solution:

α

γ

Boolean Formula

i < 10 ∨ (i = 10 ∧ ret)

Propositional Formula

Boolean Assignment

bi<10 ∨ (bi=10 ∧ bret)

α∗Propositional Assignment
i = 5, ret = T

EQ(β)

Counterexample ν

bi<10 = T
bi=10 = F
bret = T

SMT Solver Learning Algorithm

AP = {i < 10, i = 10, ret}

Predicate Abstraction

Use predicate abstraction with given atomic propositions.
Solution:

Boolean Assignment

MEM (µ)

bi<10 = T
bi=10 = F
bret = T

SMT Solver Learning Algorithm

AP = {i < 10, i = 10, ret}

Predicate Abstraction

Use predicate abstraction with given atomic propositions.
Solution:

Boolean Assignment

MEM (µ)

bi<10 = T
bi=10 = F
bret = T

SMT Solver Learning Algorithm

AP = {i < 10, i = 10, ret}

γ∗

Propositional Formula

(i < 10) ∧ ¬(i = 10) ∧ ret

Predicate Abstraction

Use predicate abstraction with given atomic propositions.
Solution:

Boolean Assignment

MEM (µ)

bi<10 = T
bi=10 = F
bret = T

SMT Solver Learning Algorithm

AP = {i < 10, i = 10, ret}

γ∗

Propositional Formula

(i < 10) ∧ ¬(i = 10) ∧ ret

Predicate Abstraction

Use predicate abstraction with given atomic propositions.
Solution:

α

γ

Boolean Formula

i < 10 ∨ (i = 10 ∧ ret)

Propositional Formula

Boolean Assignment

bi<10 ∨ (bi=10 ∧ bret)

(i < 10) ∧ ¬(i = 10) ∧ ret

γ∗

α∗

MEM (µ)

Propositional Assignment
i = 5, ret = T

EQ(β)

Counterexample ν

bi<10 = T
bi=10 = F
bret = T

SMT Solver Learning Algorithm

AP = {i < 10, i = 10, ret}

How to Answer Queries

Problem

The teacher is asked to answer
the question about invariants without knowing invariants..

Invariant Properties
For the annotated loop

An Invariant I must satisfy the following conditions:

{δ} while ρ do S end {�}

(A) (holds when entering the loop)

(B) (holds at each iteration)

(C) (gives after leaving the loop)�

δ ⇒ ι

ι ∧ ρ ⇒ Pre(ι, S)

ι ∧ ¬ρ ⇒ �

ι

ι

ι

Observation #1
In we can say “YES” by checking three conditions.EQ(β)

Invariant Properties
For the annotated loop

An Invariant I must satisfy the following conditions:

{δ} while ρ do S end {�}

(A) (holds when entering the loop)

(B) (holds at each iteration)

(C) (gives after leaving the loop)�

δ ⇒ ι

ι ∧ ρ ⇒ Pre(ι, S)

ι ∧ ¬ρ ⇒ �

ι

ι

ι

Observation #1
In we can say “YES” by checking three conditions.

Observation #2

δ ⇒ I ⇒ � ∨ ρ
strongest

under-approximation
of an invariant

weakest
over-approximation

of an invariant

EQ(β)

Equivalence Query Resolution:

1. “YES”, if satisfies invariant conditions.

 Then, we find an invariant!

γ(β)

EQ(β)

(A) (holds when entering the loop)

(B) (holds at each iteration)

(C) (gives after leaving the loop)�

δ ⇒ ι

ι ∧ ρ ⇒ Pre(ι, S)

ι ∧ ¬ρ ⇒ �

ι

ι

ι

1. “YES”, if satisfies invariant conditions.

2. Otherwise, we need a counter example to answer “No”.

No

Guessγ(β)

ν |= γ(β)⊕ ι

No,
with found a counterexample .α∗(ν)

⇒ ν |= γ(β)⊕ ι

Equivalence Query Resolution: EQ(β)

γ(β)

Under Approximation
Over Approximation ι

ι

Case 1

No,
with found a counterexample .α∗(ν)

ν |= γ(β)⊕ ι

⇒ ν |= γ(β)⊕ ι

Equivalence Query Resolution: EQ(β)

1. “YES”, if satisfies invariant conditions.

2. Otherwise, we need a counter example to answer “No”.

γ(β)

Under Approximation
Over Approximation ι

ι

Guess

No

γ(β)

Case 2

Guess

No

γ(β)

Case 1 & 2

No,
with found a counterexample .α∗(ν)

No

Equivalence Query Resolution: EQ(β)

Under Approximation
Over Approximation ι

ι

1. “YES”, if satisfies invariant conditions.

2. Otherwise, we need a counter example to answer “No”.

γ(β)

Guess

No

γ(β)

Case 1 & 2

No,
with found a counterexample .α∗(ν)

No

ι ⇒ γ(β) ⇒ ι
Cannot find a counterexample.

Guessγ(β)

Case 3

Equivalence Query Resolution: EQ(β)

Under Approximation
Over Approximation ι

ι

1. “YES”, if satisfies invariant conditions.

2. Otherwise, we need a counter example to answer “No”.

γ(β)

Guess

No

γ(β)

Case 1 & 2

No,
with found a counterexample .α∗(ν)

No

Restart the learning algorithm!
Cannot find a counterexample.

Guessγ(β)

Case 3

Equivalence Query Resolution: EQ(β)

Under Approximation
Over Approximation ι

ι

1. “YES”, if satisfies invariant conditions.

2. Otherwise, we need a counter example to answer “No”.

γ(β)

1. “NO”, if is unsatisfiable.

Membership Query Resolution:

γ∗(µ)

γ∗(µ) = (i = 0 ∧ ¬(i < 10))

µ = {bi=0 = T, bi<10 = F}

MEM (µ)

Answer Yes

Yes

Case 1

γ∗(µ)

γ∗(µ) ⇒ ι
γ∗(µ) ⇒ ι Under Approximation

Over Approximation ι
ι

1. “NO”, if is unsatisfiable.

2. Use approximations to answer the query.

γ∗(µ)

Membership Query Resolution: MEM (µ)

Answer/No

Yes

No

Case 2

γ∗(µ)

γ∗(µ) �⇒ ι
γ∗(µ) �⇒ ι Under Approximation

Over Approximation ι
ι

1. “NO”, if is unsatisfiable.

2. Use approximations to answer the query.

γ∗(µ)

Membership Query Resolution: MEM (µ)

Case 3

?

γ∗(µ)
ι ⇒ γ∗(µ) ⇒ ι

Unknown

Answer Yes / No

Yes

No

Case 1 & 2

Under Approximation
Over Approximation ι

ι

1. “NO”, if is unsatisfiable.

2. Use approximations to answer the query.

γ∗(µ)

Membership Query Resolution: MEM (µ)

Case 3

?

γ∗(µ)

Unknown

Random Answer!Answer Yes / No

Yes

No

Case 1 & 2

1. “NO”, if is unsatisfiable.

2. Use approximations to answer the query.

γ∗(µ)

Membership Query Resolution: MEM (µ)

1. “YES”, if satisfies invariant conditions.

It’s still Sound
Why?
When resolving equivalence query EQ(β)

γ(β)

(A)

I ∧ ρ ⇒ Pre(I , S)(B)

I ∧ ¬ρ ⇒ �(C)

δ ⇒ I (holds when entering the loop)

(holds at each iteration)

(gives after leaving the loop)

I

I

I �

We always check the conditions before say “Yes”.

An SMT solver is sound and complete for propositional formulae.

Effect of Random Answer

Under Approximation

Over Approximation ι
ι

γ∗(µ)

MEM (µ)

? Unknown

Effect of Random Answer

Under Approximation

Over Approximation ι

ι
Invariants ι1 ι2

γ∗(µ)

MEM (µ)

ι1

ι2

? Unknown

Both of the random answers can lead to an invariant.

Effect of Random Answer

Under Approximation

Over Approximation ι

ι
Invariants ι1 ι2

γ∗(µ)

MEM (µ)

ι1

MEM (µ) = Y ES

leads to ι1

Yes

Effect of Random Answer

Under Approximation

Over Approximation ι

ι
Invariants ι1

ι2

γ∗(µ)

MEM (µ)

ι2

leads to
MEM (µ) = NO

No

ι2

Invariants are Not Unique

while i < entries && status = 0 do
! retval := nondet
! locked := false;
! switch retval do
! ! case ENXIO: retval := 0;
! ! case EAGAIN: retval := 0;
! ! case ENOMEN: retval := 0;
! ! case 0: i := i + 1;
! end
! locked := true;
! if retval != 0 && (status = 0 || status = ECONNRESET) then
! ! status := retval;
end

{locked ∧ i = 0}

{locked ∧ (i �= 0 ⇒ status = retval)}

((io status = retval ∧ io status = 0) ∨ (io status = retval ∧ retval �= 0 ∧ io lock)∨
(i = 0 ∧ io lock)) ∧ ((i < entries) ∨ io lock)

io lock ∧ (i = 0 ∨ (io status = 0 ∧ io status = retval) ∨ (retval �= 0 ∧ io status = retval))

io lock ∧ ((io status = 0 ∧ retval �= 0 ∧ i = 0)∨
(io status = retval ∧ retval �= 0) ∨ (io status = retval ∧ io status = 0) ∨ i = 0)

1.

2.

3.

...

Experiments
Case AP MEM EQ Coin Toss Restarts Time(sec)

ide-ide-tape 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 6 216.1 111.8 47.2 9.9 0.602

parser 20 6694.5 819.4 990.3 12.5 32.120

usb-message 10 20.1 6.8 1.0 1.0 0.128

vpr 7 14.5 8.9 11.8 2.9 0.055

Performance Table

Experiments
Case AP MEM EQ Coin Toss Restarts Time(sec)

ide-ide-tape 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 6 216.1 111.8 47.2 9.9 0.602

parser 20 6694.5 819.4 990.3 12.5 32.120

usb-message 10 20.1 6.8 1.0 1.0 0.128

vpr 7 14.5 8.9 11.8 2.9 0.055

Performance Table

1. Search Space is Huge, naive search shouldn’t work
#AP = 20 ⇒ |S| = 22

20

Experiments
Performance Table

1. Search Space is Huge, naive search shouldn’t work

2. Multitude of Invariants
#AP = 20 ⇒ |S| = 22

20

990.3 / 12.5 = 79.5 Coin Toss / Restarts

If there is only one “the invariant”,
then we need restarts. 279.5

Case AP MEM EQ Coin Toss Restarts Time(sec)

ide-ide-tape 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 6 216.1 111.8 47.2 9.9 0.602

parser 20 6694.5 819.4 990.3 12.5 32.120

usb-message 10 20.1 6.8 1.0 1.0 0.128

vpr 7 14.5 8.9 11.8 2.9 0.055

Conclusion

• Algorithmic Learning + Decision Procedures +
Predicate Abstraction
=> Invariant Generation Technique

• Works in realistic settings (Linux device drivers and
SPEC 200 Benchmarks)

• Exploits the flexibility in invariants by randomized
mechanism.

• Static/Dynamic Analysis can help.
More accurate approximations reduce number of
restarts(EQ) and random answers(MEM).

Thank You

