
3. Solution: Implementing a Teacher to Answer Queries

   

5. Conclusion
  * Novel approach to invariants generation.

            * Multitude of invariants is the reason why this 
     approach is working with random answers.
            * We are currently working on its extension     
     supporting quantified invariants.

   
    1. “Yes”, if the guess    meets the three conditions [A,B,C]
      to be an invariant.
     2. Try to answer “No” with a counterexample. 
      If not possible, then restart.
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1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
{δ} while ρ do S end {�} λ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample   .

λ
EQ(β)

β

I

4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

Restart!
Cannot find a counterexample.

No, 
with found a counterexample.

1. Try to find an answer.
2. If not possible choose a random answer.
   It is still sound since we always check the three conditions 
   in equivalence query resolution.

Yes / No Random Answer
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ρloop guard

� = (i = 10 ∧ ret)
postcondition

precondition

δ = (i = 0)

i < 10 ∨ (i = 10 ∧ ret)Invariant :

while i < 10 do

   ret := random();

   if ret != 0 then i := i + 1

end

{

Example:

(A) I ∧ ρ ⇒ Pre(I , S)(B) I ∧ ¬ρ ⇒ �(C) 1)

2)
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EQ(β) = Yes if β ≡ λ

if β �≡ λ ∧ (µ |= β ⊕ λ)EQ(β) = No with µ

Predicate
Abstraction

Under Approximation

Invariant

Over Approximation

The data are the average of 500 runs and collected on a 2.6GHz Intel E5300 Duo Core with 3GB memory running Linux 2.6.28.
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We present a novel technique for finding loop invariants in propositional formulae by com-

bining algorithmic learning, decision procedures, and predicate abstraction. Given invariant

approximations derived from pre- and post-conditions, our new technique exploits the flexibil-

ity in invariants by a simple randomized mechanism.

Algorithmic learning has been applied to assumption generation in compositional reasoning.

In contrast to traditional techniques, the learning approach does not derive assumptions in an

off-line manner. It instead finds assumptions by interacting with a model checker progressively.

Since assumptions in compositional reasoning are generally not unique, algorithmic learning can

exploit the flexibility in assumptions to attain preferable solutions. Applications in verifying

concurrent systems have been reported.

Finding loop invariants follows a similar pattern. Invariants are often not unique. Indeed,

programmers derive invariants incrementally. They usually have their guesses of invariants in

mind, and gradually refine their guesses by observing program behavior more. Since in practice

there are many invariants for given pre- and post-conditions, programmers have more freedom in

deriving invariants. Yet traditional invariant generation techniques do not exploit the flexibility.

They have a similar impediment to traditional assumption generation.

We report our first findings in applying algorithmic learning to invariant generation. We

show that the three technologies (algorithmic learning, decision procedures, and predicate ab-

straction) can be arranged in concert to derive loop invariants in propositional (or, quantifier-

free) formulae. The new technique is able to generate invariants for some Linux device drivers

and SPEC2000 benchmarks without any help from static or dynamic analyses.

For a while loop, an exact learning algorithm for Boolean formulae searches for invariants

by asking queries. Queries can be resolved (not always, see below) by decision procedures

automatically. Recall that the learning algorithm generates only Boolean formulae but deci-

sion procedures work in propositional formulae. We thus perform predicate abstraction and

concretization to integrate the two components.

In reality, information about loop invariant is incomplete. Queries may not be resolvable

due to insufficient information. One striking feature of our learning approach is to exploit the

flexibility in invariants. When query resolution requires information unavailable to decision

procedures, we simply give a random answer. We surely could use static analysis to compute

soundly approximated information other than random answers. Yet there are so many invariants

for the given pre- and post-conditions. A little bit of incorrect information does not prevent

algorithmic learning from inferring correct invariants. Indeed, the learning algorithm is able to

derive invariants in our experiments by coin tossing.

The technique can be seen as a framework for invariant generation. Static analyzers can

contribute by providing information to algorithmic learning. Ours is hence orthogonal to existing

techniques.

1This work is to be presented at VMCAI’10
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