
PCC Framework
for Program-Generators

Soonho Kong Wontae Choi Kwangkeun Yi

Programming Research Lab.
Seoul National University

{soon,wtchoi,kwang}@ropas.snu.ac.kr

15 August 2009
Workshop on Proof-Carrying Code and Software Certification

/82

Introduction

• Program-Generators

- Need to ensure the safe execution of the generated
programs as well as the generator itself.

- Safety properties of the generated programs are efficiently
expressed by the grammar G.
e.g. “generated programs should not have nested loops”

- Question:
“Do the generated programs conform to the safety
grammar G?”

2

Program
Generator

Generated
Program

/82

Introduction

3

• Abstract Parsing

- Powerful static string analysis technique presented by
Doh, Kim, and Schmidt[1]

- Determine whether the strings generated in the program
conform to the given grammar G.

- Use LR parser as a component

- Formalized and parameterized in the abstract
interpretation framework by Kong, Choi and Yi[2]

1. Kyung-Goo Doh, Hyunha Kim, and David Schmidt. “Abstract parsing: static analysis of dynamically generated
 string output using LR-parsing technology.” In Proceeeding of the International Static Analysis Symposium, 2009.
2. Soonho Kong, Wontae Choi, Kwangkeun Yi. “Abstract Parsing for Two-staged Languages with Concatenation"
 International Conference on Generative Programming and Component Engineering, (to appear), 2009.

/824

Big Picture
PCC Framework for Program-Generators

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height

domain 2
P
. Instead of using a particular abstract domain for 2

P
, we parameterize this abstract domain by

providing conditions which an abstract domain D�
needs to satisfy.

1. D�
should be a complete partial order (CPO).

2. D�
is Galois connected with the set of parse stacks 2

P
.

3. An abstracted parsing function Parse action�
is defined as a sound approximation of the parsing

function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D�
as in Figure 3 (right).

Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D�σ0

which is of type D� → D�
. To determine whether the programs generated by a program-generator e

conform to the safety grammar, we check that the following equation holds:

F(α2P→D�({pinit})) = α2P→D�({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,

5] specialized to program-generators by means of abstract parsing. The code producer and code con-

sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared

safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This

solution is used as a certificate for the safety of the program-generator. The code producer uploads or

sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-

point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point

solution of the received program-generator. In contrast to the computing a fixed-point solution on the

code producer side, checking can be done in a single pass.

3

Safety grammar is shared between code producer and consumer.

/825

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height

domain 2
P
. Instead of using a particular abstract domain for 2

P
, we parameterize this abstract domain by

providing conditions which an abstract domain D�
needs to satisfy.

1. D�
should be a complete partial order (CPO).

2. D�
is Galois connected with the set of parse stacks 2

P
.

3. An abstracted parsing function Parse action�
is defined as a sound approximation of the parsing

function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D�
as in Figure 3 (right).

Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D�σ0

which is of type D� → D�
. To determine whether the programs generated by a program-generator e

conform to the safety grammar, we check that the following equation holds:

F(α2P→D�({pinit})) = α2P→D�({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,

5] specialized to program-generators by means of abstract parsing. The code producer and code con-

sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared

safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This

solution is used as a certificate for the safety of the program-generator. The code producer uploads or

sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-

point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point

solution of the received program-generator. In contrast to the computing a fixed-point solution on the

code producer side, checking can be done in a single pass.

3

In code producer side, abstract parser computes
fixed-point solution for the given program-generator.

Big Picture
PCC Framework for Program-Generators

/826

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height

domain 2
P
. Instead of using a particular abstract domain for 2

P
, we parameterize this abstract domain by

providing conditions which an abstract domain D�
needs to satisfy.

1. D�
should be a complete partial order (CPO).

2. D�
is Galois connected with the set of parse stacks 2

P
.

3. An abstracted parsing function Parse action�
is defined as a sound approximation of the parsing

function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D�
as in Figure 3 (right).

Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D�σ0

which is of type D� → D�
. To determine whether the programs generated by a program-generator e

conform to the safety grammar, we check that the following equation holds:

F(α2P→D�({pinit})) = α2P→D�({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,

5] specialized to program-generators by means of abstract parsing. The code producer and code con-

sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared

safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This

solution is used as a certificate for the safety of the program-generator. The code producer uploads or

sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-

point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point

solution of the received program-generator. In contrast to the computing a fixed-point solution on the

code producer side, checking can be done in a single pass.

3

Code producer sends the program-generator
with the computed fixed-point solution.

Big Picture
PCC Framework for Program-Generators

/827

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height

domain 2
P
. Instead of using a particular abstract domain for 2

P
, we parameterize this abstract domain by

providing conditions which an abstract domain D�
needs to satisfy.

1. D�
should be a complete partial order (CPO).

2. D�
is Galois connected with the set of parse stacks 2

P
.

3. An abstracted parsing function Parse action�
is defined as a sound approximation of the parsing

function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D�
as in Figure 3 (right).

Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D�σ0

which is of type D� → D�
. To determine whether the programs generated by a program-generator e

conform to the safety grammar, we check that the following equation holds:

F(α2P→D�({pinit})) = α2P→D�({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,

5] specialized to program-generators by means of abstract parsing. The code producer and code con-

sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared

safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This

solution is used as a certificate for the safety of the program-generator. The code producer uploads or

sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-

point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point

solution of the received program-generator. In contrast to the computing a fixed-point solution on the

code producer side, checking can be done in a single pass.

3

Code consumer receives an untrusted program-generator
and an accompanied fixed-point solution.

Big Picture
PCC Framework for Program-Generators

/828

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height

domain 2
P
. Instead of using a particular abstract domain for 2

P
, we parameterize this abstract domain by

providing conditions which an abstract domain D�
needs to satisfy.

1. D�
should be a complete partial order (CPO).

2. D�
is Galois connected with the set of parse stacks 2

P
.

3. An abstracted parsing function Parse action�
is defined as a sound approximation of the parsing

function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D�
as in Figure 3 (right).

Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D�σ0

which is of type D� → D�
. To determine whether the programs generated by a program-generator e

conform to the safety grammar, we check that the following equation holds:

F(α2P→D�({pinit})) = α2P→D�({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,

5] specialized to program-generators by means of abstract parsing. The code producer and code con-

sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared

safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This

solution is used as a certificate for the safety of the program-generator. The code producer uploads or

sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-

point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point

solution of the received program-generator. In contrast to the computing a fixed-point solution on the

code producer side, checking can be done in a single pass.

3

In code consumer side, the checker validates that
the received fixed-point is indeed the solution

for the received program-generator.

Big Picture
PCC Framework for Program-Generators

/829

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height

domain 2
P
. Instead of using a particular abstract domain for 2

P
, we parameterize this abstract domain by

providing conditions which an abstract domain D�
needs to satisfy.

1. D�
should be a complete partial order (CPO).

2. D�
is Galois connected with the set of parse stacks 2

P
.

3. An abstracted parsing function Parse action�
is defined as a sound approximation of the parsing

function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D�
as in Figure 3 (right).

Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D�σ0

which is of type D� → D�
. To determine whether the programs generated by a program-generator e

conform to the safety grammar, we check that the following equation holds:

F(α2P→D�({pinit})) = α2P→D�({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,

5] specialized to program-generators by means of abstract parsing. The code producer and code con-

sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared

safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This

solution is used as a certificate for the safety of the program-generator. The code producer uploads or

sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-

point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point

solution of the received program-generator. In contrast to the computing a fixed-point solution on the

code producer side, checking can be done in a single pass.

3

If the checker validates it successfully,
the code consumer is ready to execute the received program-generator.

Big Picture
PCC Framework for Program-Generators

/8210

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height

domain 2
P
. Instead of using a particular abstract domain for 2

P
, we parameterize this abstract domain by

providing conditions which an abstract domain D�
needs to satisfy.

1. D�
should be a complete partial order (CPO).

2. D�
is Galois connected with the set of parse stacks 2

P
.

3. An abstracted parsing function Parse action�
is defined as a sound approximation of the parsing

function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D�
as in Figure 3 (right).

Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D�σ0

which is of type D� → D�
. To determine whether the programs generated by a program-generator e

conform to the safety grammar, we check that the following equation holds:

F(α2P→D�({pinit})) = α2P→D�({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,

5] specialized to program-generators by means of abstract parsing. The code producer and code con-

sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared

safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This

solution is used as a certificate for the safety of the program-generator. The code producer uploads or

sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-

point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point

solution of the received program-generator. In contrast to the computing a fixed-point solution on the

code producer side, checking can be done in a single pass.

3

Program-Generator

/82

Language
for Program-Generators

11

• Tow-staged language with concatenation

the analysis first computes L(s0). With the state s0 and the token
“[” the goto controller returns goto(s0, [) = s1. Having L(s0) =
s1, the analysis computes X0(s1). After consuming the token “a”
and moving to the parse state s2, parser reduces with S → a and
moves the parse state back to s1. Then goto(s1,S) = s3 yields
X0(s1) = s3. Therefore we have

X1(s0) = s3s1

and the analysis concludes that X1 has a string unacceptable for the
grammar because state s3 is not the accept state.

1.3 Contribution

• We formulate this abstract parsing idea in the abstract interpre-
tation framework for two-staged languages with concatenation.
By this formulation we can see what approximations are in-
volved in abstract parsing and what limitations (as a static anal-
ysis) to expect from the abstract parsing technique.
Based on the abstract interpretation framework, we present a
concise and elegant perspective on the core idea of abstract
parsing. In the original work [16], code is abstracted into the
parse stack and the special operator “∗” is needed to handle
string concatenation. In our formulation, however, we abstract
code into a function which maps an input parse stack to an
output parse stack. Code concatenation is handled simply by
function composition.

• We generalize the abstract-parsing abstract interpretation, as
usual, by parameterizing the abstract domain of parse stacks.
This generalization separates the core idea and its implemen-
tation of abstract parsing. By choosing an appropriate abstract
domain, one can control the analysis precision and cost.

1.4 Organization

Section 2 introduces the syntax and semantics of our target two-
staged language with concatenation. Section 3 presents concrete
parsing semantics with LR(k) parsing. Section 4 presents abstract
parsing semantics and its parameterized framework. Section 5
presents a concrete example of the abstract domain which can be
used to instantiate the framework. Section 6 reviews related work
and Section 7 concludes.

2. Two-staged Language

We consider a two-staged language with concatenation. The lan-
guage is an imaginary, first-order language whose only value is
code. The language is minimal, so as not to distract our focus
on formalizing the abstract parsing method. For example, loops
and conditional jumps are without the condition expression, for
which abstract interpretation anyway considers all iterations and
all branches.

2.1 Syntax and Semantics

A program is an expression e:

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3 | ‘f
An expression can contain code fragments f :

f ∈ Frag ::= x | let | or | re | (|) | f1.f2 | ,e
Operational semantics of the target language is shown in Figure 3.
Expression ore1e2 is for branches. It could be the value of e1 or the
value of e2. Expression rexe1 e2 e3 is for loops. Variable x has the
value of e1 as its initial value. Loop body e2 is iterated ≥ 0 times.
The result of each iteration e2 will be bound to x in e2 for next
iteration or in e3 for the result of the loop. Backquote form ‘f is for
code fragment f . We construct the fragment by using the following

σ ∈ Env = Var → Code

v ∈ Code = Token sequence

e ∈ Exp

f ∈ Frag

σ �0 e ⇒ v
σ �0 x ⇒ σ(x) (variable)

σ �0 e1 ⇒ v σ[x �→ v] �0 e2 ⇒ v�

σ �0 let x e1 e2 ⇒ v� (let binding)

σ �0 e1 ⇒ v

σ �0 or e1 e2 ⇒ v

σ �0 e2 ⇒ v

σ �0 or e1 e2 ⇒ v
(branch)

σ �0 e1 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 re x e1 e2 e3 ⇒ v� (loop)

σ �0 e2 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 loop x e2 e3 ⇒ v�

σ �0 e3 ⇒ v

σ �0 loop x e2 e3 ⇒ v

σ �1 f ⇒ v

σ �0 ‘f ⇒ v
(back quote)

σ �1 f ⇒ v

σ �1 x ⇒ x σ �1 let⇒ let
(token)

σ �1 or⇒ or σ �1 re⇒ re

σ �1 (⇒ (σ �1)⇒)

σ �1 f1 ⇒ v1 σ �1 f2 ⇒ v2

σ �1 f1.f2 ⇒ v1v2

(concatenation)

σ �0 e ⇒ v

σ �1 ,e ⇒ v
(comma)

Figure 3. Operational semantics of the target language.

tokens: variables, let, or, re, (, and). Compound fragment f1.f2

concatenates two code fragments f1 and f2. Comma fragment ,e
first evaluates e then substitutes its result code value for itself. Note
that the meaning of ‘f and ,e is the same as in LISP’s quasi-
quotation system.

2.2 Example Program

In our language, it is possible to write a program generating
mal-formed code. For instance, the following program gener-
ates “a b” (after zero iterations), “or a b” (after one iteration),
“or or a b” (after two iterations), and so on.

re x ‘a (‘or . ,x) (‘,x . b)

Only “or a b” is correct and the rest of them have a syntax error.

the analysis first computes L(s0). With the state s0 and the token
“[” the goto controller returns goto(s0, [) = s1. Having L(s0) =
s1, the analysis computes X0(s1). After consuming the token “a”
and moving to the parse state s2, parser reduces with S → a and
moves the parse state back to s1. Then goto(s1,S) = s3 yields
X0(s1) = s3. Therefore we have

X1(s0) = s3s1

and the analysis concludes that X1 has a string unacceptable for the
grammar because state s3 is not the accept state.

1.3 Contribution

• We formulate this abstract parsing idea in the abstract interpre-
tation framework for two-staged languages with concatenation.
By this formulation we can see what approximations are in-
volved in abstract parsing and what limitations (as a static anal-
ysis) to expect from the abstract parsing technique.
Based on the abstract interpretation framework, we present a
concise and elegant perspective on the core idea of abstract
parsing. In the original work [16], code is abstracted into the
parse stack and the special operator “∗” is needed to handle
string concatenation. In our formulation, however, we abstract
code into a function which maps an input parse stack to an
output parse stack. Code concatenation is handled simply by
function composition.

• We generalize the abstract-parsing abstract interpretation, as
usual, by parameterizing the abstract domain of parse stacks.
This generalization separates the core idea and its implemen-
tation of abstract parsing. By choosing an appropriate abstract
domain, one can control the analysis precision and cost.

1.4 Organization

Section 2 introduces the syntax and semantics of our target two-
staged language with concatenation. Section 3 presents concrete
parsing semantics with LR(k) parsing. Section 4 presents abstract
parsing semantics and its parameterized framework. Section 5
presents a concrete example of the abstract domain which can be
used to instantiate the framework. Section 6 reviews related work
and Section 7 concludes.

2. Two-staged Language

We consider a two-staged language with concatenation. The lan-
guage is an imaginary, first-order language whose only value is
code. The language is minimal, so as not to distract our focus
on formalizing the abstract parsing method. For example, loops
and conditional jumps are without the condition expression, for
which abstract interpretation anyway considers all iterations and
all branches.

2.1 Syntax and Semantics

A program is an expression e:

e ∈ Exp ::= x | let x e1 e2 | or e1 e2 | re x e1 e2 e3 | ‘f
An expression can contain code fragments f :

f ∈ Frag ::= x | let | or | re | (|) | f1.f2 | ,e
Operational semantics of the target language is shown in Figure 3.
Expression ore1e2 is for branches. It could be the value of e1 or the
value of e2. Expression rexe1 e2 e3 is for loops. Variable x has the
value of e1 as its initial value. Loop body e2 is iterated ≥ 0 times.
The result of each iteration e2 will be bound to x in e2 for next
iteration or in e3 for the result of the loop. Backquote form ‘f is for
code fragment f . We construct the fragment by using the following

σ ∈ Env = Var → Code

v ∈ Code = Token sequence

e ∈ Exp

f ∈ Frag

σ �0 e ⇒ v
σ �0 x ⇒ σ(x) (variable)

σ �0 e1 ⇒ v σ[x �→ v] �0 e2 ⇒ v�

σ �0 let x e1 e2 ⇒ v� (let binding)

σ �0 e1 ⇒ v

σ �0 or e1 e2 ⇒ v

σ �0 e2 ⇒ v

σ �0 or e1 e2 ⇒ v
(branch)

σ �0 e1 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 re x e1 e2 e3 ⇒ v� (loop)

σ �0 e2 ⇒ v σ[x �→ v] �0 loop x e2 e3 ⇒ v�

σ �0 loop x e2 e3 ⇒ v�

σ �0 e3 ⇒ v

σ �0 loop x e2 e3 ⇒ v

σ �1 f ⇒ v

σ �0 ‘f ⇒ v
(back quote)

σ �1 f ⇒ v

σ �1 x ⇒ x σ �1 let⇒ let
(token)

σ �1 or⇒ or σ �1 re⇒ re

σ �1 (⇒ (σ �1)⇒)

σ �1 f1 ⇒ v1 σ �1 f2 ⇒ v2

σ �1 f1.f2 ⇒ v1v2

(concatenation)

σ �0 e ⇒ v

σ �1 ,e ⇒ v
(comma)

Figure 3. Operational semantics of the target language.

tokens: variables, let, or, re, (, and). Compound fragment f1.f2

concatenates two code fragments f1 and f2. Comma fragment ,e
first evaluates e then substitutes its result code value for itself. Note
that the meaning of ‘f and ,e is the same as in LISP’s quasi-
quotation system.

2.2 Example Program

In our language, it is possible to write a program generating
mal-formed code. For instance, the following program gener-
ates “a b” (after zero iterations), “or a b” (after one iteration),
“or or a b” (after two iterations), and so on.

re x ‘a (‘or . ,x) (‘,x . b)

Only “or a b” is correct and the rest of them have a syntax error.

Syntax

/8212

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=>

Example

Language
for Program-Generators

x is initialized with “a”

/8213

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=>

Example

Language
for Program-Generators

x is initialized with “a”

y is initialized with “or a”

Loop body is not executed.

/8214

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=>

Example

Language
for Program-Generators

x is initialized with “a”

y is initialized with “or a”

Value is “or a a”

Loop body is not executed.

/8215

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a (if loop body is not executed)

Example

Language
for Program-Generators

x is initialized with “a”

y is initialized with “or a”

Value is “or a a”

Loop body is not executed.

/8216

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

Example

Language
for Program-Generators

x is initialized with “a”

/8217

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

Example

Language
for Program-Generators

Loop body is executed once
x is initialized with “a”

x is “(a)”

Loop body is executed once

/8218

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

Example

Language
for Program-Generators

Loop body is executed once
x is initialized with “a”

x is “(a)”

y is initialized with “or a”

Loop body is executed once

/8219

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

Example

Language
for Program-Generators

Loop body is executed once
x is initialized with “a”

x is “(a)”

y is initialized with “or a”

Value is “or a (a)”

Loop body is executed once

/8220

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

 or a (a) (if loop body is executed once)

Example

Language
for Program-Generators

Loop body is executed once
x is initialized with “a”

x is “(a)”

y is initialized with “or a”

Value is “or a (a)”

Loop body is executed once

/8221

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

 or a (a)

Example

Language
for Program-Generators

x is initialized with “a”

/8222

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

 or a (a)

Example

Language
for Program-Generators

x is initialized with “a”

x is “(a)”

Loop body is executed once

/8223

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

 or a (a)

Example

Language
for Program-Generators

Loop body is executed twice
x is initialized with “a”

x is “((a))”

/8224

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

 or a (a)

Example

Language
for Program-Generators

Loop body is executed twice
x is initialized with “a”

x is “((a))”

y is initialized with “or a”

/8225

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

 or a (a)

Example

Language
for Program-Generators

Loop body is executed twice
x is initialized with “a”

x is “((a))”

y is initialized with “or a”

Value is “or a ((a))”

/8226

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

 or a (a)

 or a ((a)) (if loop body is executed twice)

Example

Language
for Program-Generators

Loop body is executed twice
x is initialized with “a”

x is “((a))”

y is initialized with “or a”

Value is “or a ((a))”

/8227

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

=> or a a

 or a (a)

 or a ((a))

 or a (((a)))

 .

 .

 .

Example

Language
for Program-Generators

Note that only one of them
is taken as a value of this
program in execution.

/8228

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height

domain 2
P
. Instead of using a particular abstract domain for 2

P
, we parameterize this abstract domain by

providing conditions which an abstract domain D�
needs to satisfy.

1. D�
should be a complete partial order (CPO).

2. D�
is Galois connected with the set of parse stacks 2

P
.

3. An abstracted parsing function Parse action�
is defined as a sound approximation of the parsing

function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D�
as in Figure 3 (right).

Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D�σ0

which is of type D� → D�
. To determine whether the programs generated by a program-generator e

conform to the safety grammar, we check that the following equation holds:

F(α2P→D�({pinit})) = α2P→D�({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,

5] specialized to program-generators by means of abstract parsing. The code producer and code con-

sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared

safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This

solution is used as a certificate for the safety of the program-generator. The code producer uploads or

sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-

point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point

solution of the received program-generator. In contrast to the computing a fixed-point solution on the

code producer side, checking can be done in a single pass.

3

Abstract Parsing

/8229

• Instead of executing the program and parsing
the result,

• Define abstract semantics using parse stack and
execute the program on it.

parse(ci) = O/X[[e]]0Σ = {c1, c2, . . . , cn}

ˆ[[e]]0Σ{pinit} = {p1, p2, . . . , pn}

Abstract Parsing

Over-approximation of the
parsing result of all the
generated programs

/8230

• Q: What should be the abstract value for Code c?

• A: Parse Stack Transition Function

Code concatenation => Function Composition

Abstract Parsing

s1 �→ s1s5

or

...

...
s1s5 �→ s1s5s10

a

...

...

+ =>

a

...
s1 �→ s1s5s10

or

/82

Abstract Parsing

31

• Abstract parsing semantics of the program Pgm is used
to determine whether generated programs conform to
the grammar G.

• If , then we
can conclude that generated programs conform to the
grammar G. Otherwise not.

Abstract
Parsing

Program
Pgm

Grammar
G

Abstract Parsing
Semanitcs

AbstractParsing(Pgm, G)({Pinit}) = {Pacc}

2P → 2P

/82

Abstract Parsing
in PCC Framework

32

• Need abstract parsing semantics to certify the
program.

• Semantic equations are derived from the program
directly.

• Loop is the only component to require fixed-point
computation.

• Certificate in our framework:
the fixed-point solution for every loop in the program.

/8233

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height

domain 2
P
. Instead of using a particular abstract domain for 2

P
, we parameterize this abstract domain by

providing conditions which an abstract domain D�
needs to satisfy.

1. D�
should be a complete partial order (CPO).

2. D�
is Galois connected with the set of parse stacks 2

P
.

3. An abstracted parsing function Parse action�
is defined as a sound approximation of the parsing

function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D�
as in Figure 3 (right).

Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D�σ0

which is of type D� → D�
. To determine whether the programs generated by a program-generator e

conform to the safety grammar, we check that the following equation holds:

F(α2P→D�({pinit})) = α2P→D�({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,

5] specialized to program-generators by means of abstract parsing. The code producer and code con-

sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared

safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This

solution is used as a certificate for the safety of the program-generator. The code producer uploads or

sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-

point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point

solution of the received program-generator. In contrast to the computing a fixed-point solution on the

code producer side, checking can be done in a single pass.

3

Certificate Generation

/82

Certificate Generation
with Example

34

• Safety Grammar
1) syntactically correct, 2) contain no loops

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

E → id | (E) | let id E E | or E E

Initial State

Accept State

Part of the LR(0) parsing controller for the safety grammar

/8235

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

Semantic Equation

Certificate Generation
with Example

/8236

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

/8237

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

/8238

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

ParseAction : Parse Stack x Token -> Parse Stack
Component of generated LR Parser

/8239

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

/8240

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

/8241

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

/8242

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

/8243

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

/8244

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

/8245

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

/8246

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

T : Parse State -> Set of Parse Stack
 Record the difference of the loop
 input and output.

/8247

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Example Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Need to compute fixed-point T!

Certificate Generation
with Example

/8248

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

P (s1) = X ◦ Y (s1)
= X ◦ PA(PA(s1, or), a)

/8249

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

P (s1) = X ◦ Y (s1)
= X ◦ PA(PA(s1, or), a)
= X ◦ PA(s5s1, a)

/82

P (s1) = X ◦ Y (s1)
= X ◦ PA(PA(s1, or), a)
= X(s8s5s1)

50

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Certificate Generation
with Example

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

/8251

Semantic Equation

Certificate Generation
with Example

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P)) X(s8s5s1) = reduce(T (s8)@s5s1)

We need . T (s8)

/8252

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→?

1st Iteration

Certificate Generation
with Example

/8253

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8∪

1st Iteration

Certificate Generation
with Example

/8254

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8∪

s8 → s4s8

1st Iteration

Certificate Generation
with Example

/8255

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8∪

T (s4)?

1st Iteration

Certificate Generation
with Example

/8256

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

1st Iteration

Certificate Generation
with Example

/8257

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4∪

1st Iteration

Certificate Generation
with Example

/8258

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4∪

s4 → s4s4

1st Iteration

Certificate Generation
with Example

/8259

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

T (s4)?

s4 �→ s6s4

1st Iteration

Certificate Generation
with Example

/8260

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

1st Iteration Done.

Certificate Generation
with Example

/8261

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

2nd Iteration

s8 → s4s8T (s4) = s6s4

Certificate Generation
with Example

/8262

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

2nd Iteration

s8 → s4s8reduce(s6s4s8) = s6s4s8

Certificate Generation
with Example

/8263

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

2nd Iteration

s8 → s4s8s4s8 → s6s4s8

Certificate Generation
with Example

/8264

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

2nd Iteration

s8 → s4s8s4s8 → s6s4s8s6s4s8 → s9s8

Certificate Generation
with Example

/8265

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

2nd Iteration

Not Changed!

Certificate Generation
with Example

/8266

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

2nd Iteration

s4 → s4s4T (s4) = s6s4

Certificate Generation
with Example

/8267

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

2nd Iteration

s4 → s4s4reduce(s6s4s4) = s6s4s4

Certificate Generation
with Example

/8268

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

2nd Iteration

s4 → s4s4s4s4 → s6s4s4

Certificate Generation
with Example

/8269

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

2nd Iteration

s4 → s4s4s4s4 → s6s4s4s6s4s4 → s6s4

Not Changed!

Not Changed!

Certificate Generation
with Example

/8270

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

s1: S -> . E

s3: E -> id . s5: E -> or . E E

s2: S -> E .

s8: E -> or E . E

s9: E -> or E E .

id
or

E

id

E
id

or

E

or

s4: E -> (. E)

s6: E -> (E .)s7: E -> (E) .

(E

)

(

(

(

or

id

Part of the LR(0) parsing controller for the safety grammar

s8 �→ s9s8

s4 �→ s6s4

2nd Iteration

s4 → s4s4s4s4 → s6s4s4s6s4s4 → s6s4

Fixed Point

Certificate Generation
with Example

/8271

Certificate Generation
with Example

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Program

s8 �→ s9s8

s4 �→ s6s4

Fixed-point Solution

• Code producer sends the program and computed
fixed-point solution.

+

/8272

PCC Framework for Program-Generators Kong, Choi, and Yi

To ensure the termination of the analysis, we need to provide an abstraction for the infinite height

domain 2
P
. Instead of using a particular abstract domain for 2

P
, we parameterize this abstract domain by

providing conditions which an abstract domain D�
needs to satisfy.

1. D�
should be a complete partial order (CPO).

2. D�
is Galois connected with the set of parse stacks 2

P
.

3. An abstracted parsing function Parse action�
is defined as a sound approximation of the parsing

function Parse action which is defined by the LR parser generator with the safety grammar G.

Finally, we derive the abstract parsing semantics for D�
as in Figure 3 (right).

Given a program-generator e and an empty environment σ0, the analysis computes F = [[e]]0D�σ0

which is of type D� → D�
. To determine whether the programs generated by a program-generator e

conform to the safety grammar, we check that the following equation holds:

F(α2P→D�({pinit})) = α2P→D�({pacc})

where pinit and pacc are the initial parse stack and accepting parse stack for the safety grammar G.

4 PCC Framework for Program-Generators

Figure 2 illustrates a PCC framework for program-generators, an abstraction-carrying code framework [1,

5] specialized to program-generators by means of abstract parsing. The code producer and code con-

sumers share the safety grammar which specifies the safety properties of the generated programs.

Program-Generator Abstract
 Parser

Received
Program-Generator

Safety
Grammar

Code
Producer

Code
Consumer

Send

Receive Receive

Fixed Point

Send

Fixed Point
Checker

Figure 2: A proof-carrying code framework for program-generators.

The code producer proves the safety of the program-generator by abstract parsing with the shared

safety grammar. In a complex and iterative process, the analysis computes a fixed-point solution. This

solution is used as a certificate for the safety of the program-generator. The code producer uploads or

sends the program-generator with the computed fixed-point solution.

The code consumer downloads or receives the untrusted program-generator and its attached fixed-

point solution. The code consumer validates that the received fixed-point solution is indeed a fixed-point

solution of the received program-generator. In contrast to the computing a fixed-point solution on the

code producer side, checking can be done in a single pass.

3

Certificate Check

/8273

Certificate Check
with Example

re x `a

 `(. ,x .)

 let y

 `or . a

 `,y . ,x

Received Program

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

1. From the received program,
 derive semantic equations.

/8274

Certificate Check
with Example

Received Fixed-point solution

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

2. Check that the received solution is
indeed the fixed-point for the program.

(one iteration is enough)

s8 �→ s9s8

s4 �→ s6s4

/8275

Certificate Check
with Example

3. Using the fixed-point solution, construct abstract parsing
 semantics of the program.

s4 �→ s6s4

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Received Fixed-point solution

s8 �→ s9s8

P = {s1 �→ s1s2}

/8276

Certificate Check
with Example

3. Using the fixed-point solution, construct abstract parsing
 semantics of the program.

s4 �→ s6s4

P = X ◦ Y

Y = λP.PA(PA(P, or), a)
T = fixλT.λs.(PA(s, a)∪

λP.PA(P,)) ◦ λP.reduce(T (top(P))@tail(P)) ◦ λP.PA(P, ()s)
X = λP.reduce(T (top(P))@tail(P))

Semantic Equation

Received Fixed-point solution

s8 �→ s9s8

P = {s1 �→ s1s2}

Accept Parse Stack

/82

Summary

• Our framework addresses two fundamental PCC
issues.

1. The certificate, a fixed-point solution, is generated
automatically by abstract parser.

2. Checking procedure on the code consumer side
is done efficiently by validating the received fixed-
point solution.

77

/82

Issues

• Two issues need further investigation.

1. Size of the certificate:

Certificate in our framework:
the fixed-point solution for every loop in the program.

- O(# of loops) : linear to the program size

78

/82

Issues

• Two issues need further investigation.

1. Size of the certificate:
- O(# of parse states)
of parse states is fixed with the given grammar.

79ParseState → 2ParseStack

/82

Issues

• Two issues need further investigation.

2. Complexity of the checker:
- As complex as the certificate generator
 Need to derive the same semantic equations.
 Need to implement all the abstract operators.
- Shared problem with other abstract-carrying
code frameworks.

80

/82

Future Work

• Work is in progress
- Implement the abstract parser and do the
 experiment.

81

/82

Thank You

82

